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Bayesian composite quantile regression with new regularization approach 
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Abstract 

Our proposed method introduces a hierarchical Bayesian 

regression model with an effective Gibbs sampler for parameter 

estimation and variable selection. It combines a regularization 

technique with Bayesian inference by reformulating the Laplace 

distribution as a mixture of Uniform and Exponential distributions. 

This mixed distribution is incorporated into the composite quantile 

regression model to form a new hierarchical model with strong 

statistical properties. 

Through a simulation study, our method outperformed both 

Bayesian and non-Bayesian approaches in variable selection and 

estimation. Additionally, it demonstrated excellent stability. When 

applied to real-world Thrombocytopenia data, our method proved 

highly effective in both estimating parameters and selecting 

relevant variables. 
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1. Introoduction 

Modeling the relationship between the dependent and independent 

variables is crucial for making accurate predictions. Quantile 

regression (QR) is an important tool for this, as it provides a 

comprehensive view of the relationship by estimating multiple 

quantile levels. However, determining the optimal QR model can 

be challenging. Composite quantile regression (CQR) addresses 

this by blending variable selection with QR, leading to powerful, 

predictive models by excluding non-significant variables. 

This search uses three estimation methods: a non-Bayesian 

approach combining Lasso with QR, and two Bayesian methods, 

including a new hierarchical model that combines composite QR 

with a modified Laplace distribution as the prior. This modification 

blends uniform and exponential distributions, offering a robust and 

efficient approach for parameter estimation and variable selection. 

Through simulation studies and real data analysis, the proposed 

method outperformed existing methods. In the real data analysis 

on Thrombocytopenia deficiency, the model successfully identified 

14 significant variables and excluded six non-significant ones, 

leading to a strong predictive model. 

2. Research problem  : 

 Given the complexity of modeling relationships between a 

response variable and a large number of independent variables, to 

what extent does the use of a composite quantile regression model 

enhance the accuracy of estimating these relationships? Why is 

variable selection considered a crucial step in constructing a 
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quantitative regression model with strong predictive power? 

Considering the infinite number of possible regression lines, how 

can one accurately determine the most appropriate quantitative 

regression function? In this context, how does the integration of a 

new regularization method within the composite quantile 

regression framework contribute to improving the model's 

precision? Furthermore, what is the significance of employing a 

Bayesian approach in estimating the parameters of such a 

complex and refined regression model? 

3.  The objective of the  research : 

The objective of this search is to propose a new hierarchical prior 

distribution model based on a novel scale mixture introduced by 

Remah (2021). This model will be applied within the framework of 

Bayesian composite quantile regression (CQR). Additionally, a 

new Gibbs sampler algorithm will be developed based on the 

aforementioned model. A comparative study will also be 

conducted, comparing the proposed model with other 

regularization methods through simulation studies and real data 

analysis. Lastly, the proposed method will be utilized to identify the 

significant variables that contribute to building a model aimed at 

describing the relationship between blood platelet deficiency and 

specific other variables. 

4.  Variable selection(VS) 

Variable selection (VS) is one of the basic principles in many 

applications, and it represents a subset selection of the important 

explanatory variables to be used in building the model, as it 

provides a good predictive model in addition to identifying the 

important variables to fit the model. (Girffin and Brown , 2010) . 
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The main assumption when using the VS is that the data contains 

many variables. Therefore, there are two main aims that must be 

achieved when building a regression model. The first is to select 

the important explanatory variables affecting the response variable 

and obtain insight into the relationship of the explanatory variables 

to the response variable through the structure of the model. The 

second is to create an accurate model that has the ability to predict 

well and has high explanatory power. 

significant Variable selection(VS) is considered one of the 

requirements when building a regression model, so excluding non-

significant variables is necessary, and this improves the accuracy 

of prediction. One of the techniques used in estimating and 

selecting variables is the Lasso technique proposed by Tibshirani 

in 1996, which works to make the non-significant variables equal 

to zero and preserve the significant variables(Tibshirani ,1996) 

5.  Bayesian Lasso  composite quantile  Regression 

Formulations  

The quantile regression (QR) model is one of the most important 

regression models. QR does not require any statistical 

assumptions and is also very robust against outlier data (Cade, B. 

S., & Noon, B. R. (2003)). All these features make the QR an 

important regression model. Therefore, it is used in many scientific 

applications, such as econometrics, finance, biological sciences, 

agricultural sciences, and medicine. Quantile regression is 

adequate for distributions that are severely skewed and non-

central. Using different quantile levels, the QR model can be used 

to estimate the relationship between independent variables and a 

dependent variable in any position of the dependent distribution 
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(Levin, J. (2002)).The quantile regression levels refer to an 

interval (0, 1). The QR model is evaluated through the relationship 

between the independent variables and a dependent variable via a 

conditional function at many quantile levels, where  (  |  ) is the 

quantile function at the many quantile level     . 

The quantile function is equivalent to the inverse distribution 

function as follows   (  |  )         ( )                   There are 

infinite quantile regression lines to describe the relationship 

between one dependent variable and many independent variables. 

But choosing the optimal quantile regression line is a hard matter. 

To overcome this problem , composite quantile regression(CQR) 

has been used. Consider   different quantile levels ,        

       Let      
       for           . Then, the CQR  

(Zou and Yuan, 2008) is given by : 

          ( ̂  
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  ̂ )  =       
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We can  rewrite the optimization problem (1) by the following 

weighted optimization problem : 
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   is the intercept parameter under the     quantile of error and 

the intercept of linear model . 

  It is impossible to differentiable equation (1) at the zero point. 

Therefore, minimization of the above equation can be achieved 

through an algorithm proposed by Koenker and D’Orey (1987). 

However, this algorithm might be inefficient at some quantile level. 

In order to estimate the CQR  parameters, a Bayesian approach 

has been used . Now, the random error term    is being to 

asymmetric Laplace distribution (ALD). Where the probability 

density function of the asymmetric Laplace distribution with one 

assigned to the scale parameter is : 

  ( |  )    (    )       ,        
( )-                             ( ) 

  Where     is the scale parameter . 

Then the joint distribution of   (       )           

(   
          

 )     (       )
                                                            

for composite quantile regression  is : 

 ( |       ) ∏ (∑       

 
     (  |      

    )   
                      (4) 

 Where the conditional  probability of    given    ,   
 ;    is 

defined as follows : 

   
((  |        

    )    (1-  )       *      
(      

      
   )+                     

, for  q=1 ,…, Q 

 The minimizing equation (1) is equivalent to maximizing the 

likelihood function of the dependent variable (3). Yu et al. (2013)); 

and Benoit et al. (2013) mentioned estimating a possible 
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parametric link between the minimization in Equation (1) and the 

maximum likelihood in Equation (1). But there are  difficulty to 

solve Equation (3) directly because of the mixture of Q elements. 

Following (Huang and Chen (2015)) we use a cluster assignment 

matrix c  whose element  i,qth (   ) is equal  to 1 if the  subject 

belongs to the q  cluster, otherwise  is belong to       0. The 

element is treated as a missing value problem. Therefore, 

likelihood takes the following form : 

         ( |       )  ∏ ∏ 

 

   

 

   

(      
(  |      
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(      
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By following Li et al. (2010), Kozumi and Kobayashi (2011), and 

Benoit et al. (13)  The dependent variable     can be view as: 

        
                

  √                               ( ) 

Where          standard normal. 

Where : 

                               
     

  (    )
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  (    )
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With   (   )               be distributed to ALD with mean and  

variance  as  follows : 
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See lixin (2010)  and   yu and zhang(2005)  for more details.   

  By letting      ̃           then we can say that   ̃   distributed as 

exponential distribution with parameter       because if we let 

  ( ̃   )  then      ( ̃   )   (         ̃)   (     ̃ ) 

  ∫    
   ̃̃

 

          ̃ 

        ̃ , with the cdf  of  exponential distribution 

Then the formula (6) can be rewritten as follow : 
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  The Bayesian Hierarchical of composite quantile regression  

 By following fadel alhusseini  (2017) the lasso composite 

quantile penalized regression solution is : 
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The Bayesian lasso composite quantile regression model  based 

on  (6) required to impose prior distribution for    Following 

Tibshirani (1996) the prior distribution of   is a Laplace density in 

loss quantile regression model is : 

   ( | )  
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)                ( )  

Now we can rewrite the prior (6) as scale mixture of Uniform 

distribution mixing with standard exponential distribution as in the 

following proposition ,see Mallick and Yi (2014) for more details . 

Proposition: Laplace distribution can be written as scale mixture 

of uniform distribution mixing with standard exponential distribution 

In mathematics facts its well known that : 
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Now by letting      in (9), we get  
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More details see (Remah ,2021) 

Hence , the Bayesian hierarchical model is : 
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Based on the hierarchical model that described above , we 

can write down the joint posterior distribution  as follows : 

 (         ̃        |   )

  ( |              )∏  (  ̃ | )∏  (  |   ) ( ) ( ) 

 

   

 

   

 

6. Simulation stady 

6.1.1 The First Simulation Scenario 

In this section, we will used very sparse case where the data of 

first simulation scenario is generated  by the following model 

          

where               is response variable and    is matrix of 

independent variables are generated with multiple  normal 

distribution , where      (    )  with (  )   (   )|    |. β  

(               )  are vector of true parameters in very sparse case. 

    is random distribution as shown in above speech   

In below table , we presented the values of MAE and SD for three 

methods under compressions as shown below:   

Table -1- the mean absolute error and standard deviation for 

first simulation scenario  

methods     (   )     (   )     ( )       (   )     ( )
  

       (   )

     (    ) 

     (        ) 
1.892 

(0.497) 

1.886 

(0.534) 

1.935 

(0.493) 

1.784 

(0.672) 

1.805 

(0.672) 

1.675 

(0.686) 

     (        ) 
1.563 

(0.673) 

1.673 

(0.561) 

1.707 

(0.634) 

1.694 

(0.593) 

1.581 

(0.693) 

1.496 

(0.732) 

     (        ) 
2.110 

(0.951) 

1.904 

(0.763) 

1.484 

(0.507) 

1.854 

(0.564) 

1.795 

(0.845) 

1.898 

(0.674) 
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     (        ) 
1.896 

(0.844) 

1.574 

(0.873) 

1.793 

(0.742) 

1.509 

(0.688) 

1.829 

(0.637) 

1.444 

(0.793) 

     (        ) 
1.264 

(0.573) 

1.342 

(0.434) 

1.462 

(0.523) 

1.456 

(0.466) 

1.378 

(0.387) 

1.193 

(0.181) 

     (        ) 
1.193 

(0.487) 

1.165 

(0.394) 

1.186 

(0.267) 

1.141 

(0.275) 

1.128 

(0.187) 

1.067 

(0.063) 

BCQRegU 
0.985 

(0.363) 

0.946 

(0.163) 

1.089 

(0.572) 

1.174 

(0.692) 

1.341 

(0.677) 

0.926 

(0.315) 

              
0.784 

(0.129) 

0.851 

(0.193) 

0.906 

(0.117) 

0.824 

(0.156) 

0.684 

(0.142) 

0.572 

(0.116) 

  Note: The results are averaged over 100 independent 

simulations. 

From the results listed in table 1, the performance of BCQR new prior  

              appears to be far better than LqReg  and 

BCQRegU. 

 In general, the MAE and SD generated by our proposed method  

              is appear quite much smaller than the MAE and SD 

generated by other methods under comparison through all various 

distributions   of random error. Also ,we see the two methods 

BCQRegU and BCQR new prior appear quite better than LqReg  

method ,Perhaps the reason for this is in these two methods  

BCQRegU and BCQR new prior used composite quantile regression 

instead of single quantile regression .  To verify the stability of the 

algorithms, it is necessary to draw the trace plot  to observe the 

possibility of its stability through the iterations imposed by the 

researcher. As followin
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g : 

Figure -1- Trace plots of our proposed method (BCQR new prior) 

for simulation in very sparse case 

from trace plot shown in figure1  ,we see our MCMC samples of 

the posterior distribution was convergence to very  stationary 
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figure-2- Histogram of our proposed method (BCQR new prior) 

parameter estimate for simulation in very sparse  case 

From the above histogram graphs to parameters estimates that 

belong to our method (BCQRegN lasso) is very closed from 

histogram of normal distribution. 

6.1.2 The second Simulation Scenario 

In this section, we will used sparse  case where the data of second 

simulation scenario is generated  by the following model 

          

where               is response variable and    is matrix of 

independent variables are generated with multiple  normal 

distribution , where     (    ) with (  )   (   )|   |. β  
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(               )  are vector of true parameters in sparse case.     

is random distribution as shown in above speech    

In below table , we presented the values of MAE and SD for three 

methods under compressions as shown below:  

Table -2- the mean absolute error and standard deviation for first 

simulation scenario  

methods     (   )     (   )     ( )       (   )     ( )
  

       (   )

     (    ) 

     (        ) 1.319 (0.737) 1.892 (0.865) 
1.979 

(0.872) 

1.003 

(0.568) 

1.562 

(0.873) 
1.041(0.793) 

     (        ) 
1.182 

(0.815) 

1.813 

(0.968) 

1.635 

(0.883) 

1.314 

(0.652) 

1.983 

(0.978) 

1.963 

(0.986) 

     (        ) 
1.813 

(0.968) 

1.172 

(0.623) 

1.614 

(0.856) 

1.872 

(0.902) 

1.983 

(0.978) 

1.952 

(0.896) 

     (        ) 1.739 (0.596) 1.599 (0.509) 
1.949 

(0.781) 

1.572 

(0.751) 

1.452 

(0.768) 

1.963 

(0.986) 

     (        ) 1.521 (0.382) 1.849 (0.680) 
1.745 

(0.569) 

1.476 

(0.294) 
1.417 (0.295) 

1.581 

(0.407) 

     (        ) 1.302 (0.627) 1.589 (0.519) 
1.394 

(0.606) 

1.3691 

(0.762) 

1.290 

(0. 670) 

1.152 

(0.779) 

BCQRegU 0.850 (0.323) 0.956 (0.215 
0.808 

(0.349) 

0.772 

(0.281) 
0.789 (0.108) 

0.949 

(0.247) 

              0.643 (0.283) 0.731 (0.153) 
0.690 

(0.144) 

0.592 

(0.221) 
0.673 (0.231) 

0.724 

(0.174) 

Note: The results are averaged over 100 independent 

simulations. 

From the results listed in table 2, the performance of BCQR new prior  

              appears to be far better than LqReg  and 

BCQRegU. 

 In general, the MAE and SD generated by our proposed method  

              is appear quite much smaller than the MAE and SD 

generated by other methods under comparison through all various 

distributions   of random error. Also ,we see the two methods 

BCQRegU and BCQR new prior appear quite better than LqReg  
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method ,Perhaps the reason for this is in these two methods  

BCQRegU and BCQR new prior used composite quantile regression 

instead of single quantile regression .  To verify the stability of the 

algorithms, it is necessary to draw the trace plot  to observe the 

possibility of its stability through the iterations imposed by the 

researcher. As following :

  

Figure -3- Trace plots of our proposed method (BCQR new prior) for 

simulation in sparse case 

from trace plot shown in figure1  ,we see our MCMC samples of 

the posterior distribution was convergence to very  stationary. 
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figure-4- Histogram of our proposed method (BCQR new prior) 

parameter estimate for simulation in sparse  case 

 

From the above histogram graphs to parameters estimates that 

belong to our method (BCQRegN lasso) is very closed from 

histogram of normal distribution 

   

  

Table (3) shows the study variables  

Symbol 

of  
Name of Variables 

Term of 

Variables 
Description of Variables 
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Variables 

   Thrombocytopenia      

Thrombocytopenia : less than 

150000 per microliter of blood 

flowing 

   Serum Ferritin S. Ferritin 

S. Ferritin is a blood protein 

that contains iron. normal 

measurements of S. Ferritin 

is man 30-350ng/I and 

woman 20-250ng/I 

   Vitamin D Vit D 

Normal measurements of  

Vitamin D is 62.4-

199.68L/nmol 

   Vitamin C Vit C 
Normal measurements of  

Vitamin C is 0.4 to 2.0  mg/dL 

   
Immune 

thrombocytopenia 
ITP It is autoimmune disorder 

   
human 

immunodeficiency virus 
HIV 

It is virus that attacks white 

blood cells and weakens the 

immune system 

   
Chronic 

lymphocytic leukemia 
CLL 

It is a type of cancer in which 

the bone marrow . 

   Mean Platelet Volume MPV 
Normal measurements of  

MPV is 9.0-17.0/Fl 

   Platelet distribution width PDW 
Normal measurements of  

MPV is 9.2-16.7/Fl 

   Random blood sugar R.B.Sugar 

Normal measurements of 

R.B.Sugar F:80-120Mg/dl 

Normal measurements of 
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R.B.Sugar F:80-120 

R:Upto180Mg/dl 

    White blood cells WBC 
Normal measurements of 

WBC( 3.50-9.50)         

    Red blood cells RBC 
Normal measurements of 

RBC( 3.80-5.80)         

    Granulocyte test Gran 
Normal measurements of 

Gran( 50. 0-70. 0)    

    
Mean corpuscular  

volume 
MCV 

Normal measurements of 

MCV( 82. 0-100. 0)    

    

Mean corpuscular 

hemoglobin 

concentration 

MCHC 
Normal measurements of 

MCHC ( 31. 6-35. 4)      

    Blood urea nitrogen B.urea 
Normal measurements of 

B.urea  ( 15-40.)       

    Serum Creatinine 
S. 

Creatinine 

Normal measurements of S. 

Creatinine ( 1.8-1.9.)       

    Low density lipoprotein LDL 
Normal measurements of 

LDL ( 2-30.)       

    High density lipoprotein HDL  

    Packed cell volume PCV  

    Age Age  

 

We use these real data to compare our proposed  method  with 

another method in the same filed. These data set collected from al- 

rafidin laboratory ,the sample size under our study was 120 

observations . To coefficients estimation of independent variables 

our algorithm has been used . Similar to simulated scenarios, 
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when our algorithm runs 13,000 times and the initial 3,000 times 

are eliminated. To compare methods  under current study    

the mean square error (MSE)   has been calculated for non- 

Bayesian  method (                           ) and Bayesian 

method (BCQRegU)(             )as  as the following         

 Table  - 4- Mean square errors for our proposed method 

(             ),(BCQRegU)and                          ) 

methods 

Methods       BCQRegU               

Quantile 

levels 

   

      

   

      

   

      

   

      

   

      

   

      
Q=6 Q=6 

MSE 32.672 31.452 28.341 27.056 25.451 20.162 
10.251 8.895 

       

The mean square error (MSE) is generated by our proposed 

method   

               is equal 8.895. The mean square error(MSE) is 

generated by (BCQRegU) is equal 10.251 ,and the mean square 

error (MSE) of  non-Bayesian method ( 

                            ) are (32.672, 31.452, 28.341, 27.056, 

25.451 and 20.162) respectively . Clearly, we can see that the 

MSE is generated by our proposed method                 is much 

smaller than the  MSE generated  by Bayesian and non-Bayesian 

methods (BCQRegU and       ) respectively. Therefore , the our 

proposed method (             ) is outperformed on Bayesian 

and non- Bayesian methods under current study .Therefore, we 

will use our  proposed method (             ) to coefficients 
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estimation and variables selection for the our real data . The  

following figure  shows the coefficients estimation and variables 

selection for independent variable   

 

 

  

  

Figure –5 -shown the coefficients estimation of  independent 

variables 

 

From above figure , there are fourteen  independent variables 

have non-zero coefficients  and also they  have negative  effecting 

on  Thrombocytopenia variable. But, there are six independent 

variables have zero coefficients, these six independent variables 

are uninformative on Thrombocytopenia variable. this mean ,we  

can exclude these six independent variables from construction our 

model. 
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7.Conclusion and Recommendation   

7.1 Conclusion  

In this thesis, a new hierarchical Bayesian new lasso composite 

quantile regression(CQR)method was introduced. When compared 

to other algorithms, our Gibbs sampler algorithm was easy to use 

and efficient. The simulation methodology and real dataset clearly 

show that our method, BCQRegN lasso, performs well when 

compared to other approaches in the same field. Therefore, we will 

conclude the following points: 

1- In our current study, a hierarchical model has been 

proposed, characterized by ease and clarity in estimating the 

model parameters. Consequently, the algorithm employed in our 

proposed method exhibited remarkable stability during the initial 

iterations. Therefore, our algorithm demonstrates efficiency and 

speed in completing the model estimation process under study. 

2- Our proposed hierarchical model enjoys ease and flexibility 

in to arriving the statistical distributions associated with the 

parameters of this model in a easy and straightforward method. 

3- We find that all estimated model parameters of the studied 

model conform to a normal distribution, which aligns with the 

theoretical distribution of the parameters. 

4- The  our proposed method was highly effective in estimating 

the parameters of the model that models the relationship between 

the response variable, Thrombocytopenia and a set of explanatory 

variables. 

5- Our proposed method successfully identified and excluded 6 

non-informative explanatory variables in modeling the relationship 
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between Thrombocytopenia and a set of explanatory variables. 

Also, included only the important variables in constructing and 

modeling this studied model. 

6- we see that all the important variables in constructing and 

modeling the relationship between Thrombocytopenia and some 

independent variables had an inverse effect 

 

7.2 Recommendation  

We recommend using mixture distributions to reframe the Laplace 

distribution in methods concerned with variable selection 

processes. 

1- Developing and proposing new hierarchical models that 

incorporate both parameter estimation and variable selection 

processes in a more flexible method. 

2- Constructing new hierarchical models by combining the new 

regularization methods with composite quantile regression(CQR) 

models, ensuring a seamless approach for parameter estimation 

and variable selection. 

3- Utilizing new regularization techniques in estimating 

coefficients and selecting variables for a regression model with a 

response variable (Thrombocytopenia) and a set of explanatory 

variables. 

4- Expanding the current study by modeling the relationship 

between Thrombocytopenia and a set of independent variables 

through the utilization of a Tobit regression model or other 

alternative models. 
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