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Bayesian composite quantile regression with new regularization approach
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Abstract

Our proposed method introduces a hierarchical Bayesian
regression model with an effective Gibbs sampler for parameter
estimation and variable selection. It combines a regularization
techniqgue with Bayesian inference by reformulating the Laplace
distribution as a mixture of Uniform and Exponential distributions.
This mixed distribution is incorporated into the composite quantile
regression model to form a new hierarchical model with strong

statistical properties.

Through a simulation study, our method outperformed both
Bayesian and non-Bayesian approaches in variable selection and
estimation. Additionally, it demonstrated excellent stability. When
applied to real-world Thrombocytopenia data, our method proved
highly effective in both estimating parameters and selecting
relevant variables.



1. Introoduction

Modeling the relationship between the dependent and independent
variables is crucial for making accurate predictions. Quantile
regression (QR) is an important tool for this, as it provides a
comprehensive view of the relationship by estimating multiple
quantile levels. However, determining the optimal QR model can
be challenging. Composite quantile regression (CQR) addresses
this by blending variable selection with QR, leading to powerful,

predictive models by excluding non-significant variables.

This search uses three estimation methods: a non-Bayesian
approach combining Lasso with QR, and two Bayesian methods,
including a new hierarchical model that combines composite QR
with a modified Laplace distribution as the prior. This modification
blends uniform and exponential distributions, offering a robust and

efficient approach for parameter estimation and variable selection.

Through simulation studies and real data analysis, the proposed
method outperformed existing methods. In the real data analysis
on Thrombocytopenia deficiency, the model successfully identified
14 significant variables and excluded six non-significant ones,

leading to a strong predictive model.

2. Research problem :

Given the complexity of modeling relationships between a
response variable and a large number of independent variables, to
what extent does the use of a composite quantile regression model
enhance the accuracy of estimating these relationships? Why is
variable selection considered a crucial step in constructing a
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quantitative regression model with strong predictive power?
Considering the infinite number of possible regression lines, how
can one accurately determine the most appropriate quantitative
regression function? In this context, how does the integration of a
new regularization method within the composite quantile
regression framework contribute to improving the model's
precision? Furthermore, what is the significance of employing a
Bayesian approach in estimating the parameters of such a

complex and refined regression model?

3. The objective of the research :

The objective of this search is to propose a new hierarchical prior
distribution model based on a novel scale mixture introduced by
Remah (2021). This model will be applied within the framework of
Bayesian composite quantile regression (CQR). Additionally, a
new Gibbs sampler algorithm will be developed based on the
aforementioned model. A comparative study will also be
conducted, comparing the proposed model with other
regularization methods through simulation studies and real data
analysis. Lastly, the proposed method will be utilized to identify the
significant variables that contribute to building a model aimed at
describing the relationship between blood platelet deficiency and
specific other variables.

4. Variable selection(VS)
Variable selection (VS) is one of the basic principles in many
applications, and it represents a subset selection of the important
explanatory variables to be used in building the model, as it
provides a good predictive model in addition to identifying the

Important variables to fit the model. (Girffin and Brown , 2010) .
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The main assumption when using the VS is that the data contains
many variables. Therefore, there are two main aims that must be
achieved when building a regression model. The first is to select
the important explanatory variables affecting the response variable
and obtain insight into the relationship of the explanatory variables
to the response variable through the structure of the model. The
second is to create an accurate model that has the ability to predict

well and has high explanatory power.

significant Variable selection(VS) is considered one of the
requirements when building a regression model, so excluding non-
significant variables is necessary, and this improves the accuracy
of prediction. One of the techniques used in estimating and
selecting variables is the Lasso technique proposed by Tibshirani
In 1996, which works to make the non-significant variables equal

to zero and preserve the significant variables(Tibshirani ,1996)

5. Bayesian Lasso composite quantile  Regression
Formulations

The quantile regression (QR) model is one of the most important
regression models. QR does not require any statistical
assumptions and is also very robust against outlier data (Cade, B.
S., & Noon, B. R. (2003)). All these features make the QR an
important regression model. Therefore, it is used in many scientific
applications, such as econometrics, finance, biological sciences,
agricultural sciences, and medicine. Quantile regression is
adequate for distributions that are severely skewed and non-
central. Using different quantile levels, the QR model can be used
to estimate the relationship between independent variables and a

dependent variable in any position of the dependent distribution
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(Levin, J. (2002)).The quantile regression levels refer to an
interval (0, 1). The QR model is evaluated through the relationship
between the independent variables and a dependent variable via a
conditional function at many quantile levels, whereQ.(y;|x;) is the

quantile function at the many quantile level ty,.

The quantile function is equivalent to the inverse distribution
function as followsQ, (yi|x;) = F~1(1) 0< t<1. There are
infinite quantile regression lines to describe the relationship
between one dependent variable and many independent variables.
But choosing the optimal quantile regression line is a hard matter.
To overcome this problem , composite quantile regression(CQR)
has been used. Consider Q different quantile levels ,0 < 1; < T, <
- <19<1 Let y;=x{B.+¢g for i=1,....,n . Then, the CQR
(Zou and Yuan, 2008) is given by :

@y @B ) = G T S0Py (Vi @,
)| (v

We can rewrite the optimization problem (1) by the following

weighted optimization problem :

argmm

(‘rl"" qﬁ ) = ar, [quwpt (y_a‘tq_
I6:)| @
Where 0 <w, <1, and ¥2_,w, = 1,is q*" component.

Where prq( .) is the loss function, 7, = ifor q=1,...,0.



a, is the intercept parameter under the tt* quantile of error and

the intercept of linear model .

It is impossible to differentiable equation (1) at the zero point.
Therefore, minimization of the above equation can be achieved
through an algorithm proposed by Koenker and D’Orey (1987).
However, this algorithm might be inefficient at some quantile level.
In order to estimate the CQR parameters, a Bayesian approach
has been used . Now, the random error term g; is being to
asymmetric Laplace distribution (ALD). Where the probability
density function of the asymmetric Laplace distribution with one

assigned to the scale parameter is :

f(elty) =1,(1 —17,) nexp {— n p,q(e)}. (3)
Where n > 0 is the scale parameter .

Then the joint distribution of y=(y,,..,y,) given X =
(x{ e x)" B = (B e BT

for composite quantile regression s :

fOlx e B~ Ty (B, W pe, (Vilxo e, B.1), (4)

Where the conditional probability of y; given x; Qr, B,m is

defined as follows :

f‘rq((yi
,for g=1,..., Q

Xis az B n) = T4(1-Tg)n exp [—n Pz, (yi — 0, - x?ﬁr)]

The minimizing equation (1) is equivalent to maximizing the
likelihood function of the dependent variable (3). Yu et al. (2013));

and Benoit et al. (2013) mentioned estimating a possible
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parametric link between the minimization in Equation (1) and the
maximum likelihood in Equation (1). But there are difficulty to
solve Equation (3) directly because of the mixture of Q elements.
Following (Huang and Chen (2015)) we use a cluster assignment
matrix ¢ whose element i,gth (c;;) is equal to 1 if the subject
belongs to the q cluster, otherwise is belong to ¢;; = 0. The
elementis treated as a missing value problem. Therefore,

likelihood takes the following form :

Q

fO1x @ Bm)~ 1_[ 1_[ (wqpe, (7:

=1

n Q

i=1 gq=1

- 8" ©®

Ciq
)

By following : and

The dependent variable &; can be view as:

&= QP1qg N ' Vi+ @z 171/ V; 2 (6)
Where wv;~ standard normal.

Where :

Tq(1-1q)

With 7e(0,1),then ,& can be distributed to ALD with mean and

variance as follows :

(1 2‘[) 1-27+272

, Var(e) = T

E(e) = -




See lixin (2010) and vyu and zhang(2005) for more details.

By letting %¥; = n ~! v, then we can say that ¥; distributed as
exponential distribution with parameter n, because if we let

p(F<v),then p@<v)=ptv<d)=pv<nv)

<!

n ~
:f e’Vd=1—e™ "
0

=1-e "7 with the cdf of exponential distribution
Then the formula (6) can be rewritten as follow :
&= P1g " Vi + N7 @2 Vi 7
= @19 Vi + 07 @2q 1 i 2
_ ~ -1 .1/ =
=@Q1q Vit " N'Z2@y \/;izi
~ -1 =
= Qg Vit N 2@, \/;izi
Then the hierarchical structure model with v;,z;,i =1,2,....n is:

~ -1 =
Yi = aq +x{ B: TP Vit 1 /2 P29 Vi Z;

n
@ ~ | | n exp(-nw)
i=1

=

( 1 )n 1 2
Zz ~ — ex ——= Z;
V2@ P\ 72 - '

The Bayesian Hierarchical of composite quantile regression

By following fadel alhusseini (2017) the lasso composite

quantile penalized regression solution is :
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Q n k
B= argminZ{ pe, i — (g + x?ﬁr)} +ay gl @)
q=1\i=1 j=1
The Bayesian lasso composite quantile regression model based
on (6) required to impose prior distribution for . Following
the prior distribution of B is a Laplace density in

loss quantile regression model is :

f (BIb) = - exp(— 2 8

Now we can rewrite the prior (6) as scale mixture of Uniform
distribution mixing with standard exponential distribution as in the

following proposition ,see for more detalils .

Proposition: Laplace distribution can be written as scale mixture
of uniform distribution mixing with standard exponential distribution

In mathematics facts its well known that :

e Mlxl = f Ae 7 dz
z>0|x|

n_)'e_allxl — J’ n_)' Ae‘azdz
z

2 > nlx| 2
Az=m
' A 1
= j a4 Ae™™—dm

m>An|x| 2 A

A ’ A
N4 e~ Mlxl — f n4 e ™ dm (9)

2 m> nilx| 2

Now by letting x = B in (9), we get



f(BIn,2) = "7’1 e—1IB|

) nA  _
= fm>n/1|[f|7 e™ dm (10)
More details see (Remah ,2021)

Hence , the Bayesian hierarchical model is :
_ T =~ -1
yi= (“r"‘xi B:t @14 Vi +2 @2qm '2,/ v Zi)

f(ylxrﬁi'ﬂ'nrz)

Ciq

(plq

i=1

p(ag) <1

(@ln) ~n"exp (—n z 1'71-)

Bl n, A~ uniform(—m,—

m~ standard exponential
n~ 1 expttm
A~ Ac—le—dl
w~ Dirichlet (d4, ..., d})

(a,b,c and d) are hyper parameter
e

(n o Q
" 1 1 § Cig (yi_ aq, _x{ﬁf_
il 35 3
q=1 \/Znn‘ltpgqﬁi ' 2971



Based on the hierarchical model that described above , we

can write down the joint posterior distribution as follows :

(B, a,,n V,w,c z,A|y, x)

n k
o« w(y|x,v, B ag,cnw) | | w(wim | | m(8;lm )ma@mom)
i=1 j=1

6. Simulation stady
6.1.1 The First Simulation Scenario

In this section, we will used very sparse case where the data of

first simulation scenario is generated by the following model
y; = x'B + ui

where y;[i =1,2,...,n] is response variable and x'is matrix of

independent variables are generated with multiple  normal

distribution , where X~N,(0,Z,) with (Z,),, = (0.5 B=
(5,0,0,0,0,0,0,0)t are vector of true parameters in very sparse case.

ui is random distribution as shown in above speech

In below table , we presented the values of MAE and SD for three

methods under compressions as shown below:

Table -1- the mean absolute error and standard deviation for

first simulation scenario

ui~0.5N(2,2)
methods ui~N(2,4) ui~N(0,1) ui~t(s ui~Lab(0,1) ui~xé,
+ 0.5N(-2,2)
LaRegiercorn 1.892 1.886 1.935 1.784 1.805 1.675
(0.497) (0.534) (0.493) (0.672) (0.672) (0.686)
LaReg erzom 1.563 1.673 1.707 1.694 1.581 1.496
(0.673) (0.561) (0.634) (0.593) (0.693) (0.732)
P 2.110 1.904 1.484 1.854 1.795 1.898
(0.951) (0.763) (0.507) (0.564) (0.845) (0.674)
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LaRegoesmomy 1.896 1.574 1.793 1.509 1.829 1.444
(0.844) (0.873) (0.742) (0.688) (0.637) (0.793)
LaRegoemors 1.264 1.342 1.462 1.456 1.378 1.193
(0.573) (0.434) (0.523) (0.466) (0.387) (0.181)
LaRegoepmons 1.193 1.165 1.186 1.141 1.128 1.067
(0.487) (0.394) (0.267) (0.275) (0.187) (0.063)
0.985 0.946 1.089 1.174 1.341 0.926
(0.363) (0.163) (0.572) (0.692) (0.677) (0.315)
BCQRm e 0.784 0.851 0.906 0.824 0.684 0572
(0.129) (0.193) (0.117) (0.156) (0.142) (0.116)

Note: The results are averaged over 100 independent

simulations.

From the results listed in table 1, the performance of BCQR new prior
BCQRewprior appears to be far better than LgReg and
BCQRegU.

In general, the MAE and SD generated by our proposed method
BCQR ew prior 1S appear quite much smaller than the MAE and SD

generated by other methods under comparison through all various
distributions  of random error. Also ,we see the two methods
BCQRegU and BCQR e prior @ppear quite better than LgReg
method ,Perhaps the reason for this is in these two methods
BCQRegU and BCQR neyw prior Used composite quantile regression
instead of single quantile regression . To verify the stability of the
algorithms, it is necessary to draw the trace plot to observe the
possibility of its stability through the iterations imposed by the
researcher. As followin
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Figure -1- Trace plots of our proposed method (BCQR new prior)

for simulation in very sparse case

from trace plot shown in figurel ,we see our MCMC samples of

the posterior distribution was convergence to very stationary
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figure-2- Histogram of our proposed method (BCOR ew prior)

parameter estimate for simulation in very sparse case

From the above histogram graphs to parameters estimates that
belong to our method (BCQRegN lasso) is very closed from

histogram of normal distribution.
6.1.2 The second Simulation Scenario

In this section, we will used sparse case where the data of second

simulation scenario is generated by the following model
yi =x'B +ui

where y;[i =1,2,...,n] is response variable and x'is matrix of
independent variables are generated with multiple  normal

distribution , where X~N(0,Z,) with (Z,);, = (0.5, B =
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(0,1,0,5,0,0,0,1)* are vector of true parameters in sparse case. ui

Is random distribution as shown in above speech

In below table , we presented the values of MAE and SD for three

methods under compressions as shown below:

Table -2- the mean absolute error and standard deviation for first

simulation scenario

ui~0.5N(2,2)
methods ui~N(2,4) ui~N(0,1) Ui~ts) ui~Lab(0,1) ui~xgs,
+ 0.5N(-2,2)
LgR 1.319 (0.737) | 1.892 (0.865) 1979 1.008 1.562 1.041(0.793)
€ =i . . . . . .
WHelzim010 (0.872) (0.568) (0.873)
1.182 1.813 1.635 1.314 1.983 1.963
LqReg(1,=029)
(0.815) (0.968) (0.883) (0.652) (0.978) (0.986)
1.813 1172 1.614 1.872 1.983 1.952
LqReg(r,=043)
(0.968) (0.623) (0.856) (0.902) (0.978) (0.896)
LR 1739 (0.59) | 1.599 (0.508) 1.949 1572 1.452 1.963
qReg(x,=o. . : . .
(74=0:57) (0.781) (0.751) (0.768) (0.986)
LgR 1.521 (0.382) 1.849 (0.680) 1745 1476 1.417 (0.295) 1581
qre =0. . . . . . .
Itrs=os) (0.569) (0.294) (0.407)
LR 1302 (0627) | 1588 (0519) 1.394 1.3691 1.290 1.152
qReg zs=o. : : . .
I(re=0se) (0.606) (0.762) (0. 670) (0.779)
0.808 0.772 0.949
BCQRegU 0.850 (0.323) | 0.956 (0.215 0.789 (0.108)
(0.349) (0.281) (0.247)
BCQR 0.643 (0.283) | 0.731 (0.153) 0.690 0592 0.673 (0.231) 0.724
newprior ' ' ' ' (0.144) (0.221) ' ' (0.174)
Note: The results are averaged over 100 independent
simulations.

From the results listed in table 2, the performance of BCQR new prior
BCQRew prior better
BCQRegU.

In general, the MAE and SD generated by our proposed method

appears to be far than LgReg and

BCQR pew prior 1S appear quite much smaller than the MAE and SD
generated by other methods under comparison through all various
distributions  of random error. Also ,we see the two methods

BCQRegU and BCQR e prior appear quite better than LgReg
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method ,Perhaps the reason for this is in these two methods
BCQRegU and BCQR new prior Used composite quantile regression
instead of single quantile regression . To verify the stability of the
algorithms, it is necessary to draw the trace plot to observe the
possibility of its stability through the iterations imposed by the

researcher. As following
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Figure -3- Trace plots of our proposed method (BCQR ey prior) fOr

simulation in sparse case

from trace plot shown in figurel ,we see our MCMC samples of

the posterior distribution was convergence to very stationary.
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figure-4- Histogram of our proposed method (BCOR new prior)

parameter estimate for simulation in sparse case

From the above histogram graphs to parameters estimates that

belong to our method (BCQRegN lasso) is very closed from

histogram of normal distribution

Table (3) shows the study variables

Symbol

of

Name of Variables

Term of

Variables

Description of Variables
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Variables

Thrombocytopenia : less than

Y1 Thrombocytopenia pltl 150000 per microliter of blood
flowing
S. Ferritin is a blood protein
that contains iron. normal
X4 Serum Ferritin S. Ferritin | measurements of S. Ferritin
iIs man 30-350ng/l and
woman 20-250ng/I
Normal measurements of
X5 Vitamin D Vit D Vitamin D IS 62.4-
199.68L/nmol
o _ Normal measurements of
X3 Vitamin C Vit C o _
Vitamin Cis 0.4 to 2.0 mg/dL
Immune _ _ _
X4 _ ITP It is autoimmune disorder
thrombocytopenia
It is virus that attacks white
human
Xs _ o _ HIV blood cells and weakens the
immunodeficiency virus _
Immune system
Chronic It is a type of cancer in which
Xe _ _ CLL
lymphocytic leukemia the bone marrow .
Normal measurements of
Xy Mean Platelet Volume MPV _
MPV is 9.0-17.0/Fl
o _ Normal measurements of
Xg Platelet distribution width | PDW .
MPV is 9.2-16.7/Fl
Normal measurements of
Xg Random blood sugar R.B.Sugar | R.B.Sugar F:80-120Mg/dI

Normal measurements of

YA




R.B.Sugar
R:Upto180Mg/dI

F:80-120

_ Normal measurements of
X10 White blood cells WBC
WBC( 3.50-9.50) x 103/UL
Normal measurements of
X11 Red blood cells RBC
RBC( 3.80-5.80) x 10%/UL
Normal measurements of
X1 Granulocyte test Gran
Gran( 50. 0-70. 0) UL
Mean corpuscular Normal measurements of
X13 MCV
volume MCV( 82. 0-100. 0) FL
Mean corpuscular
_ Normal measurements of
X14 hemoglobin MCHC
_ MCHC ( 31. 6-35. 4) g/dL
concentration
_ Normal measurements of
X1s Blood urea nitrogen B.urea
B.urea (15-40.) mg/dL
. S. Normal measurements of S.
X16 Serum Creatinine o o
Creatinine | Creatinine ( 1.8-1.9.) mg/dL
o _ Normal measurements of
X17 Low density lipoprotein | LDL
LDL ( 2-30.) mg/dL
X1g High density lipoprotein | HDL
X19 Packed cell volume PCV
X520 Age Age

Y4

We use these real data to compare our proposed method with
another method in the same filed. These data set collected from al-
rafidin laboratory ,the sample size under our study was 120
observations . To coefficients estimation of independent variables

our algorithm has been used . Similar to simulated scenarios,




when our algorithm runs 13,000 times and the initial 3,000 times

are eliminated. To compare methods under current study

the mean square error (MSE) has been calculated for non-

Bayesian method (LqReg at six quatile levels) and Bayesian

method (BCQRegU)(BCQRew prior)@s as the following table

Table - 4- Mean square errors for our proposed method
(BCQRew prior), (BCQRegU)andLqReg at six quatile level)

methods
Methods LqReg BCQRegU BCQRneW prior
Quantile | T, T3 Ty Tg Te
Q:6 Q:
levels =014 | =029 | =043 | =057 | =0.71 | =0.86
MSE 32.672 | 31.452 | 28.341 | 27.056  25.451 | 20.162
10.251 8.895

The mean square error (MSE) is generated by our proposed
method

BCQRew prior
generated by (BCQRegU) is equal 10.251 ,and the mean square
(MSE) of method (
LgReg at six quantile levels) are (32.672, 31.452, 28.341, 27.056,
25.451 and 20.162) respectively . Clearly, we can see that the

Is equal 8.895. The mean square error(MSE) is

error non-Bayesian

MSE is generated by our proposed method BCQR ey prior 1S Much
smaller than the MSE generated by Bayesian and non-Bayesian
methods (BCQRegU and LqReg) respectively. Therefore , the our
proposed method (BCQRyew prior) IS OUtperformed on Bayesian
and non- Bayesian methods under current study .Therefore, we

will use our proposed method (BCQRyewprior) 10 coefficients

A




=1 informative

= uninformative

Coefficients estimation
-1.0

§. VitD VitC ITP HIV CLLMPVPDWREB WBC RBC Gran MCVMCHCB. S, LDL HDL PCV Age
Ferritin Sugar urea Creatinine

Independent variables

estimation and variables selection for the our real data . The
following figure shows the coefficients estimation and variables

selection for independent variable

Figure =5 -shown the coefficients estimation of independent

variables

From above figure , there are fourteen independent variables
have non-zero coefficients and also they have negative effecting
on Thrombocytopenia variable. But, there are six independent
variables have zero coefficients, these six independent variables
are uninformative on Thrombocytopenia variable. this mean ,we
can exclude these six independent variables from construction our

model.
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7.Conclusion and Recommendation
7.1 Conclusion

In this thesis, a new hierarchical Bayesian new lasso composite
guantile regression(CQR)method was introduced. When compared
to other algorithms, our Gibbs sampler algorithm was easy to use
and efficient. The simulation methodology and real dataset clearly
show that our method, BCQRegN lasso, performs well when
compared to other approaches in the same field. Therefore, we will

conclude the following points:

1- In our current study, a hierarchical model has been
proposed, characterized by ease and clarity in estimating the
model parameters. Consequently, the algorithm employed in our
proposed method exhibited remarkable stability during the initial
iterations. Therefore, our algorithm demonstrates efficiency and
speed in completing the model estimation process under study.
2-  Our proposed hierarchical model enjoys ease and flexibility
in to arriving the statistical distributions associated with the
parameters of this model in a easy and straightforward method.
3-  We find that all estimated model parameters of the studied
model conform to a normal distribution, which aligns with the
theoretical distribution of the parameters.
4-  The our proposed method was highly effective in estimating
the parameters of the model that models the relationship between
the response variable, Thrombocytopenia and a set of explanatory
variables.
5-  Our proposed method successfully identified and excluded 6

non-informative explanatory variables in modeling the relationship
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between Thrombocytopenia and a set of explanatory variables.
Also, included only the important variables in constructing and
modeling this studied model.

6- we see that all the important variables in constructing and
modeling the relationship between Thrombocytopenia and some

independent variables had an inverse effect

7.2 Recommendation

We recommend using mixture distributions to reframe the Laplace
distribution in methods concerned with variable selection
processes.

1- Developing and proposing new hierarchical models that
incorporate both parameter estimation and variable selection
processes in a more flexible method.

2-  Constructing new hierarchical models by combining the new
regularization methods with composite quantile regression(CQR)
models, ensuring a seamless approach for parameter estimation
and variable selection.

3- Utilizing new regularization techniques in estimating
coefficients and selecting variables for a regression model with a
response variable (Thrombocytopenia) and a set of explanatory
variables.

4-  Expanding the current study by modeling the relationship
between Thrombocytopenia and a set of independent variables
through the utilization of a Tobit regression model or other
alternative models.
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