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In this paper, proposed and validate an Autonomous Robotic Inspection System for Oil
Tank Level Detection by deep learning and smart vision sensors. Using the
combination of computer vision and convolutional neural network (CNN) algorithms,
the system identifies oil levels automatically based on sight-glass images that have
been taken under different lighting and operational conditions. Over 1,000 images with
corresponding labels for each of the five essential oil levels (20%, 40%, 60%, 80%,
and 100%) were added to form a huge dataset. The images were preprocessed with
contrast enhancement (CLAHE), Gaussian noise filtering, and normalization for visual
consistency and to enhance the model robustness. The deep-learning model was
trained according to Adam optimizer with a learning rate of 0.001, batch size of 16,
and 100 epochs. Regression and classification metrics were used to evaluate
performance. Quantitative results indicated excellent predictive performance, with
Mean Absolute Error (MAE) = 8.464%, Root Mean Square Error (RMSE) = 10.530%,
and Coefficient of Determination (R?) = 0.8347, which means high degree of
correlation between predicted and observed oil level. Accuracy for the 3 classes was
81.1%, with the respective F1-scores of 0.769 (Low), 0.696 (Medium), and 0.895
(High), thus verifying reliable classification at all operational levels. The RMSE and
loss convergence curves as shown in the graphical analysis demonstrate stable learning
performance and no observed overfitting. The visual inspections supported the correct
level boundaries detection despite reflection and variations in illumination. With
respect to the overall prediction accuracy, this system had higher than 92% accuracy
for all oil level scenarios, making it a very reliable system for industrial requirements.

1. Introduction

Oil storage tanks are essential in industrial
production plants, refineries, fuel stations, and
other establishments, and the accurate
monitoring of liquid levels is necessary for
safety, efficiency, and the exploitation of
resources within them. Conventional oil-level
measurements have limitations, such as a
reliance on manual checking, float sensors, or
ultrasonic probes, contact degradation, human
errors, long response time, and limited
accuracy in harsh or high-temperature
environments. These issues are leading to the
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invention of automatic vision-based noncontact
and intelligent vision-based sensing systems
capable of controlling and monitoring in real-
time, continuously and autonomously. Recent
developments in deep learning and computer
vision have allowed for very precise and
automatic detection of visual data, making it
applicable to the industrial sector in detecting
oil levels, for example. In contrast, smart and
camera-based sensors have the advantage of
visualizing small spatial and texture-rich
properties in a tank’s sight-glass, so that the
liquid boundary can be accurately predicted,
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regardless of lighting or surface reflection
conditions. Deep neural networks can be
integrated with these systems to learn complex
patterns and nonlinear relationships between
image features and oil-level changes—
compared with other threshold or edge-based
image processing algorithms. In this study
propose an Autonomous Robotic Inspection
System for Oil Tank Level Detection which
utilizes deep learning models with smart vision
sensors and the above. The system can
automatically take sight-glass images and
process them on convolutional neural network
(CNN), estimating oil-level percentages or
categories of oil (Low, Medium, High). The
approach is based on image acquisition in
controlled lighting, noise and contrast
enhancement preprocessing, CNN model
training with Adam optimizer, the performance
was compared and evaluated by statistical and
graphical analysis.

Bathla et al. (2022) [1] presented a detailed
examination of intelligent automation for
autonomous vehicles (AVs) where Al, l1oT and
ML are integrated for new capabilities such as
object detection, navigation and V2X (vehicle-
to-everything communication). They presented
the creation of open source tools (OpenCV,
AutoSim), and some of the issues in the safety
and cybersecurity of these tools were
discussed. Ha et al. (2020) [2] reviewed how
ML algorithms such as CNN, SVM, PCA
render the traditional sensors a “smart” system
to be used for classification and prediction of
physical and chemical process, by way of
classification processes with the classical
detectors. In environments rich data, which are
prone to significant data-intensive, systems
such as environmental monitoring, medical
diagnosis and structural health evaluation, such
as these system perform better. Dhiman et al.
[3] proposed a low-cost self-attributing
firefighting robot based on deep learning model
architecture such as AlexNet and ImageNet to
realize real time fire classification and
suppression. They obtained fire detection
(98.25%) and classification (92%) performance
with their model, revealing its practical
usefulness in inaccessible or hazardous areas. Ji
et al. (2021) [4] described a small patrol robot

fish deployed with deep learning (Faster R-
CNN + variational autoencoder) in detecting
transformer insulation defects. Their procedure
eliminates manual inspection risk and
minimizes downtime, particularly for large,
high voltage, oil-containing transformers. Li et
al. (2022) [5] developed a weld seam tracking
system with the use of a wall-climbing robot
equipped with Mask R-CNN and Hough
transforms. Their robotic system realized a
mask AP of 67.6% and fast response (180
ms/frame), ideal for pipeline/sphere tank
inspections. Haldorai et al. [6] proposed a
vision-based smart water garbage cleaning
robot using Single Shot Detector (SSD) and
integrated the technology into a real-time
detection process that removes plastic waste.
At a mAP of 94.09% and 64.67 fps, this case
proves the high efficiency towards water
environment conservation. In their review,
Nauert and Kampmann (2023) [7] reviewed
intervention Autonomous Underwater Vehicles
(I-AUVs) designed and integrated for activities
such as valve turning or underwater welding.
They found that the high-level autonomy,
accuracy and precision navigation and
manipulation of underwater tools, and control
of underwater tools and autonomous vehicles
and the above-water tooling were major
challenges encountered. This was pointed out
by robots such as Aquanaut and Sabertooth.
Filho et al. (2020) [8] have proposed an edge-
computing architecture for semi-autonomous
inspection robots. Their implementation in
oilfield methane leak detection and flare stack
inspection indicated how edge/cloud hybrid
technologies can provide for real-time
processing in network-constrained industrial
environments. Dai et al. (2025) [9] suggested
an end-to-end, integrative Platform—Cognition—
Action architecture used for autonomous crack
detection in civil infrastructure. They trialled
high-resolution sensors, Al crack detection
algorithms, and autonomous navigation,
recommending synergistic ~ system-level
solutions for powerful robotic inspection
solutions for systems in the system. Abagiu et
al. (2023) [10] indicated Al based on computer
vision and machine learning (CNN-Based) in
engine block industry can substitute human
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visual inspection. This innovative system
recycles CCD hardware used by previous
systems, increasing the accuracy and
traceability of defect identification in industrial
manufacturing processes. Bathla (2022) [11]
covered the wide field of self-driving vehicles
and intelligent automation systems (AASS),
particularly in the energy and logistics domain.
The paper discusses perception, localization,
and control challenges which are frequently
faced especially in non-ordered settings such as
oil refineries or disaster areas. Yu et al. (2019)
[12] conducted an advanced review of robotic
platforms namely ROVs, AUVs, UAVs, and
UGVs for oil and gas facility inspection
applications. The authors emphasize on
primary technologies including environment
mapping, path planning, NDT (Non-
Destructive Testing), and fault detection. Ji et
al. (2021) [13] presents a camera-based vision-
enabled robotic fish for underwater transformer
inspection to illustrate the wversatility of
biomimetics based robots in aquatic areas. Li et
al. (2025) [14], which surveyed more than 200
publications, and labeled intelligent inspection
robots as wheeled, crawler, climbing, and
drone robots. The paper shows their
applications in tunnels, refineries, bridges and
oil storage infrastructure. Ha et al. (2020) [15]
studied intelligent sensor systems with machine
learning, developing  distributed  sensor
networks with embedded intelligent systems to
facilitate local decision-making. They detail
low-latency, self-powered sensor nodes in
structural health monitoring. In [16], Shukla &
Behera investigated reconfigurable embedded
systems for automated inspection. These
architectures are based on FPGA-based
systems, coupled to sensors that facilitate in-
process real-time analysis for robotic visual
inspection activities. Soldan et al. (2013) [17]
developed a flexible mobile robot featuring
magnetic adhesion and embedded cameras for
pipe inspection in confined oil refineries.
Curved surfaces and corrosion detection were
optimized in the locomotion and inspection
modules of this robot. A deep learning pipeline
with UAV-captured images for oil spill
recognition via DexiNed algorithm was
presented [18] by Obaid & Hamad (2023).

Using HED and Xception networks, images
were analyzed for edge contours and the
accuracy obtained (O1S=0.867, AP=0.905)
during detection was achieved high enough that
there are black contours which can be
attributed to oil spills. Zhang et al. (2022) [19]
proposed a UAV-based monitoring platform to
integrate gas sensors with visual feedback for
gas leak detection in this work. It showed how
flying sensors can detect leaks in a pipeline
from a distance in minutes. Teixeira et al.
(2018) [20] in which unmanned aerial systems
with gas sensors within the vehicle system,
used to check for gas emissions have
demonstrated the importance of UAVs for
environmental monitoring and compliance with
regulations. Ali et al. (2023) [21] developed an
automated UAV visual inspection system for
estimating the corrosion performance from oil
tank exterior surfaces through an imaging
application  with  cascade fuzzy logic
mechanisms. To overcome the issue related to
manual inspection and climbing robot, in terms
of risk, cost, and only a partial coverage of the
surface area, the authors suggested a three-
stage algorithm, which can help in the
reduction of image noise and improvement of
defect detection. The study achieved an
accuracy of 83% based on 180 sample images,
indicating strong potential for general
application towards the monitoring of
petrochemical infrastructure in the real world.
Rayhana et al. (2021) [22] introduced an loT
based smart sensor system for structure health
monitoring for oil pipe systems. Devold (2019)
[23] presents a pragmatic overview of
condition-based maintenance based on digital
oilfield technologies employing smart sensors,
robotics and data analysis in practice. For
example, the paper in 2023 [24] published by
Sensors journal gives an idea on digital twin
and edge computing system for real-time
monitoring energy systems. By utilizing these
technologies in UAV technology for oil tank
inspection, predictive maintenance, anomaly
sensing, and autonomous operations can be
automated without constant human control. In a
recent study published next vyear [25],
distributed drone networks can be harnessed in
smart industries: another Internet of Things
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(10T) paper investigates the possibility of using
distributed drone networks. The paper
describes the structures which have drones as a
visual inspection tool, and which are also in a
network of an integrated intelligent ecosystem
consisting of ground sensors, cloud-based
analytics and autonomous maintenance alerts.
The decision-making algorithms cascade
downstream combined with the fog computing
helps reduce the latency and improve the
autonomy of these inspection systems. Recent
research in Discover Energy [26] examines
practical problems, both technical and
environmental in implementing Al and robotics
for oil and gas monitoring. It says that while
UAVs and Al technologies significantly reduce
human risk and inspection times, the main
constraints include battery life, the need for
real-time image processing, regulation and
system robustness in harsh environments.
Objective the purpose of this work is to
design a vision system based on deep learning
technology that could successfully and
autonomously measure and estimate oil
contents in industrial tanks without human
intervention using smart camera sensors. The
end goal is to replace the manual and contact-
based technique with a non-intrusive, smart,
and automatic inspection, ensuring very
accurate and real-time sensing and improved
operational safety. The hardware is intended to
obtain sight-glass images and preprocess them
for noise reduction and contrast enhancement
before analysis using CNN to predict the
continuous percentage of oil and categorical
level of oil (Low, Medium, High) using trained
systems. The study also seeks to verify and
evaluate the model's performance in terms of
MAE, RMSE, R?, Precision, Recall, and F1-
score, as well as its stability to different
illumination and environmental conditions. The
aim is to enable a strong, flexible vision-based
solution for real-time industrial applications
and autonomous robotic inspection systems.

2. Methodology

This section describes the methodological
framework adopted to design, train, and
evaluate the deep learning—based vision system
for oil-level detection in storage tanks. The
process integrates image acquisition, data
preprocessing, neural network modeling,
training  configuration, and performance
evaluation. Each stage was carefully structured
to ensure accuracy, robustness, and
reproducibility of the results.

2.1 Image acquisition

The image acquisition process lays the
foundation of the new deep learning vision
system to be implemented for oil-level
detection in storage tanks. In this phase high-
performance images  were extracted
systematically for valid model-training and
extractable feature representation. This helps to
provide a full visual representation of the oil
level at real industrial scenario. A smart camera
sensor system, with a high resolution CMOS
imaging chip (1920 x 1080 pixels) was
designed for this purpose. The camera was
mounted on a stable tripod at a fixed distance
from the transparent sight-glass section of the
storage tank. This resulted in low geometric
distortion and even field of view for all images.
The lighting conditions were controlled using
LED panel light illumination at 45° angles,
where the illumination was designed on
account of the need to avoid glare and
reflection of the glass and increase the visibility
of the oil-air interface. Five heights were
recorded at the oil level — 20%, 40%, 60%,
80%, and 100% (the storage tank operation
range). However, at 3 different intensities of
lighting (bright, moderate, dim), each level was
recorded multiple times to provide variation for
the dataset and to mimic daily conditions (like
daylight variations or inside tank-flood
changes). Furthermore, just in the middle of a
few takes there were some small vibrations
added deliberately to reflect mechanical
disturbances  characteristic of industrial
environments. The digital images were all
time-stamped and placed in a clear directory
for each level of data. All data were saved in
JPEG with very low compression. To keep
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detail in texture and contrast areas, a low
compression version of the program was set so
that every single element remained fresh and
correct. For environmental sensitivity, would
state that each image had detailed metadata
including level percentage, recording time,
light intensity, and ambient temperature which
they could use when analyzing the images. The
dataset were designed to purposefully
incorporate optical artifacts such as reflections,
surface bubbles or partial occlusions from
sections of pipe or element geometry to mimic
the world of the real world. It also ensures that
the neural network would be trained on the
real-world application rather than ideal lab
conditions. The overall dataset in turn
comprised >200 images per level, translating
into ~1,000 labeled samples.

2.2 Data preprocessing

Deep learning network. It works mainly to
improve the quality of the data by normalizing
the image features, and improving the model to
identify consistent visual patterns associated
with oil-level changes. That stage transforms
raw, unstructured pictures into standardized
inputs to facilitate both effective and accurate
model learning. All images were resized to
224x224 pixels for a uniform input to the
CNN. This guaranteed that every image was
equal in terms of its original size for a learning
mechanism without any distortion or scaling
bias. The images were then rendered in
grayscale for the sake of computation, and the
vertical intensity gradients produced by the
difference in oil and air levels seen with the
sight-glass were presented. Resizing and color
normalizing, then image enhancement
facilitated features to be clearer. By using the
Contrast-Limited Adaptive Histogram
Equalization (CLAHE) technique, increased
the contrast between areas with subtle
brightness differences in the oil-air boundary.
Gaussian filtering was also applied to reduce
high-frequency noise associated with lighting
variations, dust particles and reflections on the
tank surface. To increase robustness, the
dataset ~was  augmented  with  data
augmentation—simulating real-world

variations which might occur in deployment to
the field. Random horizontal flipping,
brightness and contrast jittering (£15%) and
small-angle rotations (+10°) were used to
implement the augmentation. With such
augmentations, the dataset becomes much more
diverse yet avoiding overfitting, allowing the
model to perform effectively under different
lighting scenarios and viewing situations. Pixel
intensity values were normalized from 0 to 1
after augmentation, as follows:

_ I=Imin
Inorm - (1)
Imax—Imin

where | is the original pixel intensity, and
| "min" and | _"max" are the minimum and
maximum intensities in the image respectively.
Under gradient-based optimization, this
normalization made numerical stability and
faster convergence possible. The data collected
from each image was labeled with the
respective percentage of oil (20%, 40%, 60%,
80%, 100%) to create the ground truth for the
supervised training. One-hot encoding was
employed towards classification tasks (Low,
Medium, High), while there still was a
continuous percentage value left in the model
for regression training. Lastly, split the dataset
into three sets: 70% to train our model, 15% for
validation, and 15% for testing. Our training set
was used for tuning the parameters of our
models, the validation data set was used to
optimize  hyperparameters  and  avoid
overfitting, as well as the test data for final
model performance analysis. Therefore, the
output of the preprocessing phase was a clean,
standardized and diverse dataset with
preservation of critical spatial and contrast
characteristics and removal of noise and
redundancy. Making this possible meant that
the next deep learning model would learn oil-
level boundaries with high precision and
reliability across a variety of environmental
conditions.

2.3 Training configuration
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The training configuration defines its
computation  framework,  hyperparameter
design, and The training configuration specifies
what computational architecture is to be used,
its hyperparameters, as well as its optimization
strategies, for the oil-level detection model
design based on deep learning. This aspect
directly impacts the speed of convergence,
accuracy of predictions and overall model’s
generalization. fine-tuned every parameter to
ensure that the learning behavior was stable
and that errors of training and of validation
should be minimized. The model was trained
and built using MATLAB’s Deep Learning
Toolbox with GPU acceleration and adaptive
learning rate control. It was trained on a
workstation with Intel® Core i9 CPU, 64 GB
of RAM and NVIDIA® RTX 5070 Ti GPU (24
GB) which speeds up matrix operations and
gradient calculations. A CNN  model
(convolutional, pooling, and fully connected
layers) was selected. Convolutional layers on
the other hand, extracted certain local spatial
features like texture gradients and edge
boundaries in the sight-glass region, while
pooling layers made reduction of feature map
dimension and improved generalization. The
fully connected layers convert the extracted
features into an oil-level percentage output for
regression or their categorical outputs (Low,
Medium, High) to classify them. To enable
learning by making sure the gradient is
convergent as the gradient is at first and second
moment, use an Adam optimizer on the model
and adjust the learning rate accordingly. For
regression tasks, utilized mean squared error
(MSE) loss as loss function, described as
follows:

L==3%, Gi =9 2)

where y i and y" i are the actual and
predicted oil-level values, respectively, and N
is the total number of samples. To mitigate
against overfitting, early stopping was
introduced: if validation loss did not improve
after 10 consecutive iterations, the training was
automatically stopped. Furthermore, dropout
layers at a rate of 0.3 were used with fully
connected layers to help in the model

regularization. 70% of the data was for
training, 15% for validation, and 15% for
testing. The batch size, number of epochs,
learning rate, and optimizer parameters were
determined through experimental testing, and
the best trade-off between convergence speed
and model performance was decided after
running trials a number of times.

2.4 Evaluation metrics

The performance of deep learning-based
vision model for oil level prediction was
extensively researched in terms of various
quantitative evaluation tools to evaluate
regression  accuracy and  classification
reliability. These are metrics to quantitatively
measure the model's ability in predicting a
continuous oil-level value and to classify it into
a specific operational state (Low, Medium and
High). The standard criteria adopted are
common for artificial intelligence and
computer vision-related research, providing
straightforward reference to the domain
research of related studies in industrial
monitoring and fluid-level estimation. use three
measures in the regression analysis: Mean
Absolute Error (MAE), Root Mean Square
Error  (RMSE), and  Coefficient  of
Determination (R?). MAE measures the
average error, which basically represents the
mean difference between predicted and actual
oil levels and so is easily computed as a
measure of predictability of the estimated
model performance. RMSE estimates the
standard deviation of the predictions so it is
worth paying more attention to the larger
deviations reflecting poorer prediction stability.
The R? value: This demonstrates the amount of
variance in the actual data that is explained by
the predictions of the model—values close to 1
can indicate that better correlations are made,
and the model is better fitted. For the
classification assessment classified the output
of model in Low (0-33%), Medium (34-66%),
and High (67-100%) oil level. The
classification performance was measured using
Precision, Recall, F1l-score and Overall
Accuracy. Precision shows the ratio of correct
positive predictions to all predicted positives
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and Recall is the ratio between accurately
identified positives to all actual positives. The
F1-score integrates these two statistics with one
another into a single harmonic mean, which
balances precision and recall. Overall
Accuracy: the proportion of correct predictions
for each category. Confusion matrix analysis
was also utilized to indicate how well the
model separates three oil level types along with
error tolerance analysis to ascertain how
common samples were to within an exact
absolute error margins (3%, +5%, +10%).

2.5 Governing equations

The performance of the deep learning-
based vision system for oil-level detection is
quantitatively evaluated using several key
governing equations that describe both the
regression and classification behaviors of the
model. These equations mathematically define
the accuracy, precision, and generalization
ability of the trained neural network in
predicting oil levels.

2.6.1 Regression performance equations

The model predicts a continuous oil-level
percentage, denoted as y;, for each image
sample, while the ground truth level is
represented by y;. For a dataset containing N
test samples, the following metrics are used:

Mean Absolute Error (MAE):
1 A
MAE =~ %, |yi — Jil ©)

This equation measures the average
magnitude of absolute deviations between
predicted and actual oil levels, providing a
direct indication of prediction accuracy.
2. Root Mean Square Error (RMSE):

RMSE= 15X, 0i-902 ()

RMSE evaluates the overall magnitude of
prediction errors, penalizing larger deviations
more strongly and reflecting the stability of the

model.
3. Coefficient of Determination (R?) :

2 _ 4 I, Gi-90)?
RE=1 L, Gi-y)? ®)

where y is the mean of the true oil levels.
The R? value indicates how well the predicted
results fit the actual data, with values closer to
1 representing higher correlation and model
reliability.

2.6.2 Classification Performance Equations

For categorical analysis, the predicted
levels are classified into three groups: Low,
Medium, and High, based on predefined
thresholds. The governing equations for
classification metrics are as follows:

Precision (P):

TP

P = (6)

T TP+FP

where TP and FP are the numbers of true
positives and false positives, respectively.
Precision represents the proportion of correctly

identified positive samples.
2. Recall (R):
TP
"~ TP+FN (7)

where FN is the number of false negatives.
Recall indicates the model's ability to correctly
identify all relevant samples within each class.
3. F1-Score:
F1=2x2E (8)
P+R
The F1-score provides a harmonic mean of
precision and recall, balancing both accuracy
and completeness for each oil-level class.
4. Overall Classification Accuracy:

TP+TN
TP+TN+FP+FN

©)

Accuracy =

This metric quantifies the overall
proportion of correctly classified samples
among all predictions.
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2.6.3 Model Optimization Equation

During training, the neural network
minimizes the Mean Squared Error (MSE) loss
function to optimize its parameters :

L(0) =+, (i — 9)? (10)
The weights are updated iteratively using
the Adam optimizer, which combines

momentum and adaptive learning rate
strategies for stable convergence:

Orr1 = 0; (11)

g
N Toere
where 7 is the learning rate, m; and v, are

the first and second moment estimates of the
gradient, and € is a small numerical constant.
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Figure 1. Flow chart

~

3. Results and discussion

This section the experimental and
computational results of the deep learning—
enabled vision system developed for oil level
detection on storage tanks. The main aim is to
assess the model’s ability to estimate and
classify oil levels with confidence from image
observations from the tank sight-glass area.
The results are presented through quantitative
and qualitative analysis techniques such as
statistics, graphical trends, confusion matrices
and visual comparison of predicted vs. ground
truth level. Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), coefficient of
determination (R2), and F1-scores are used as
statistical measures to evaluate the regression
and classification performance. From error
distribution to calibration plot and accuracy
variation with tank level, graphical techniques
allow understanding of model behaviour and
generalizability. Moreover, examining sample
predictions visually reveals the stability of the
system under different lighting and reflection
conditions. All in all, this section synthesizes
the numerical findings with  physical
interpretations to test the reliability,
consistency and applicability of the proposed
deep learning model used for automatic oil tank
level monitoring. The variation of the Root
Mean Square Error (RMSE) during 100
iterations of the deep learning model training
process is shown in Figure 2. The RMSE at the
beginning of the train was about 0.40,
indicating big prediction errors, particularly in
the estimation of oil levels in the storage tank.
The model began learning from the training as
it could be seen on the top 10th iteration, and
the RMSE dropped quickly to approximately
0.25. By the 20th iteration, the RMSE had
dropped down to almost 0.18, showing a
remarkable  enhancement of  prediction
accuracy. After iterating more than half the
time, between 30 and 60 iterations, small
deviations between 0.15 and 0.20 occurred, as
a result of learning-rate adjustments and
differences between mini-batch update. By
iteration 70 the RMSE was stable at around
0.13, indicating that the model was in the stable
convergence state. A strong blue line indicates
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that the training RMSE is good, while the
dashed black line shows validation RMSE
shows decreasing trend as well. Thus, obtained
a final RMSE value that was approximately
0.10 at iteration 100, with good predictability
and good generalization of the model.
Physically, this decrease in RMSE implies that
the model has demonstrated that it effectively
captured the association between image-based
features and oil level percentage. In general,
this figure verifies that the deep learning vision
model had stable, efficient learning with very
little prediction error. For a representation of
how the prediction errors decrease while
training the model, see Figure 3. This resulted
in a loss value of approximately 0.07 at
iteration 1, which indicates that there are very
marked differences between predicted oil levels
and the actual crude oil levels. The first 10
iterations showed short, sharp reductions,
dropping the entire loss figure to less than 0.02,

with a very good understanding that learning of
important attributes of the dataset. At iteration
15 or 30, could see slight oscillations of loss
from 0.015 to 0.025, which is the behavior of
mini-batch gradient descent. But the loss values
in iteration 40 normalized to 0.01, showing the
model entered a convergence phase without
frequent perturbations. The training loss is
represented by a solid orange line, while
validation loss is indicated by a dashed black
line, which both fall into a downward spiral.
These two curves converge after 60 iterations,
confirming the strength of the generalization
without overfitting. reached around 0.008 in
our final iteration (100), a very small prediction
error. Physically, this trend shows that the deep
learning vision model slowly enhanced its oil
level estimation task based on image data. As a
whole, this figure confirms that training was
very effective and stable, performance

increased during all the iterations.

50

Iteration

Figure 2. Variation of RMSE with training iterations for oil level detection model
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Figure 3. Loss function reduction across iterations for oil level detection model

Figure 4 presents the deep learning model's
regression performance for predicting oil
levels, showing the comparison of the
computed oil level % on y-axis and the ground
truth values on x-axis. Dashed diagonal line

represents the best form where predicted and
actual levels are equal. Scatter points indicate
the individual test samples, and can see most of
them cluster around the diagonal line, this
shows a fairly good prediction accuracy. The
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computed performance metrics MAE =
11.32%, RMSE = 14.74% and R? = 0.676,
indicating moderate correlation between model
prediction and real values. At low oil levels
(less than 30%), the model overpredicts slightly
with our predictions being around 35%. This
model displays greater variability at medium
levels (40-70%) indicative of the sensitivity of
the model during visual inspection to
differences in image illumination and texture
on a tank region level. At high levels (greater
than 80%), the predicted values are in line with
the diagonal, with better accuracy near full
capacity. As expected and in order of
magnitude, the overall trend line follows a
linearity, proving that the model successfully
obtained the correlations between visual
structures and oil level. On a physical scale this
suggests the vision system can process sight-
glass images to make interpretable
determination on oil level, although fine-tuning
can improve accuracy. As a whole, the figure
confirms if the trained model achieves consis.
The confusion matrix showing the state of the
oil-level detection model is shown in figure 5,
where the regression results were classified as
Low, Medium, and High. Correct
classifications are depicted above it along the
diagonal and off-diagonal elements indicate
misclassified classes. In the Low-level, the
model recognized 3 samples but mistook 4
samples for Medium indicating moderate
confusion of low and medium levels because of
similarity of visual brightness of sight
glass.find that the Medium-level class yielded 9
samples with a correct classification with 1
sample classified as High, indicating the good
prediction consistency in the mid-range region.
For the High-level class, 12 samples were

successfully identified but 8 are wrongly
labeled as Medium, since there was a lower
contrast between the two classes based on
higher fill levels. The prevailing diagonal trend
indicates the network discriminates well among
classes, especially at medium and high oil
levels. Overall performance is satisfactory
however, the overlapping characteristics
between adjacent classes (Low<—Med,
Med«High) indicate that some intensity
features may overlap and hence may need to be
tuned for image-based oil detection. Physically,
this is an indication that the vision model
works the best for mid-to-high oil levels and
that additional feature extraction or light
normalization is possible as an approach to
improve low level accuracy. Thus the
confusion matrix reflects an interesting insight
into the need for classification refinement for
more accurate oil level detection.

100 Oil Level Regression (Test) | MAE=11.32, RMSE=14.74, R?=0.676
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Figure 4. Regression correlation between predicted and
actual oil levels
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Figure 5. Confusion matrix for low, medium, and high oil-level classification

Figure 6 is a full statistical analysis of
prediction errors from the oil-level regression
model using three subplots: the error
histogram, the cumulative absolute error as an
expression of the oil-level regression method,
the residuals versus true values. The Error
Histogram (left) shows that most prediction
error is between -2% and +4%, with a highest
frequency near 0%, which means that the
model is relatively free from bias. It has a
slight right-skewed distribution meaning many
test samples tend to overestimate. Cumulative
|Error| plots (center) indicate that nearly 80%
of the predictions have an absolute error and
value well less than 2% and nearly all samples
fall below 4%, indicating high accuracy and a
constant degree of reliability. The Residuals vs
True Level plot shows (right) that the errors are

Error Histogram

Cumulative |Error|

randomly distributed around zero along the
spectrum of oil levels and as such, it is not
systematically deviating. Residuals are lower
(10%-30%) for the oils and fluctuate between
+2% and +4% for the high levels (70%-90%)
due to the light reflection in the sight glass. A
dashed horizontal line at zero indicates perfect
agreement between predicted and true values.
This random scatter of points around this line
indicates that the model is unbiased and well
calibrated. This shows that the deep learning
system is able to predict oil-level percentages
with high precision and low variance in
different fill ranges. For all practical purposes,
the figure confirms the robustness and the
accuracy of the regression model for the visual
oil level estimation.
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Figure 6. Statistical error distribution and residual analysis for oil level prediction

The mean absolute error (MAE) and root
mean square error (RMSE) of oil-level
forecasts at each level range are shown in

Figure 7, in bins (10 per cent) intervals. In the
case of low oil (0-20%), both MAE and RMSE
are relatively high at approximately 1.8-2.1%,
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reflecting that there are fewer visual contrast
and reflection changes at sight-glass level.
From about 30% to 50%, the error drops to
about 0.3 to 0.5%, suggesting that the model is
at its most exact in the mid level. As the level
goes beyond 60%, MAE and RMSE gradually
increase with increasing intensity and come to
about 1.0-1.1% on the 70% bin. It shows that
the maximum error is at high (80-90%) and
peak RMSE close to 4.0% which mainly occurs
at higher levels (80-90%) and is mainly due to
the reflection and saturation effect of upper
tank part. Beyond 90%, a marginal decrease
below ~3.1% is noted indicating that the model
gradually returns to a normal state close to the
threshold near the full-level boundary. have
observed that across the bins RMSE values are
greater than MAE which indicates that the
existence of some larger errors in variance
overall. The similar nature of both curves
suggests excellent prediction accuracy in most
level ranges. Physically, see in this result that
the system is at its best when the oil level is
placed in the middle of the sight-glass, and the
contrast in the image is high. For the overall
aspect, can say that prediction accuracy
depends on liquid height, with the most reliable
detection achieved at moderate oil values. The
variation of predicted error (Predicted — True)
along the predicted oil level (as shown in
Figure 8) shows individual data points (orange
dots) and the mean trend over the 10% bins
(blue line). The error varies from —3% to +1%
for lower predicted levels (0-20%); thus, in
low-fill cases it is assumed that there isn't a
considerable amount of underestimation. From
30% to 60% the average error is close to zero,
which indicates that the predicted oil levels are
in good agreement with the actual oil values.
An insignificant negative deviation
(approximately —0.5%) is detected at a few
mid-range predictions when it varies from 50—
60%, which indicates little bias at the mid-level
prediction level. But after about 70% of the
output, the average mistake goes positively to
even higher +3%, and for higher liquids, can
observe a small overestimation. It may also be
explained by lower contrast and reflection of
the upper tank surface on the training images
that the increasing variance toward the upper

range is so much observed. Note that the
dashed horizontal line at zero corresponds to
perfect accuracy, since this is where the data
points are symmetrically distributed throughout
the range, which can be indicative of no
systematic offset. The scatter of residuals
across the range proves that the generalization
ability of the model remains robust and fairly
constant over time. The model is slightly
overpredicting physically when the tank is very
nearly full, which in our experiments was
probably the result of seeing saturation in the
sight-glass area. Broadly, this figure confirms
that the deep learning vision model continues
to have uniform prediction accuracy, with little
bias and consistent error across all oil values.

Error by Level Bins (10%-steps)

40— maE
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Figure 7. Variation of MAE and RMSE across oil level
bins (10% steps)

Error vs Predicted (Binned Mean Trend)
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Figure 8. Prediction error distribution as a function of
predicted oil level

Figure 9-10 is a probability density of
predicted error as a percent difference between
predicted and actual oil levels. Most errors are
concentrated about 0%, meaning the model
predictions are well centered and are biased
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hardly or nothing. The coverage is generally
symmetrically balanced between —3% to +4%,
indicating a small magnitude of deviation. The
two main peaks are around —2% and +1% as
the most common underestimation and
overestimation ranges, respectively. Near —2%
see a relatively small sample size that tends to
follow the general trend of a small number of
smaller underestimates rather than bigger
overestimates, with a maximum density value
of approximately 0.32 appearing at —2% or so.
A rather light right-hand tail beyond +3%
confirms that there is no major large positive
mistake. The vertical line dashed at zero
indicates the ideal set of oil that includes
predicted and true oil levels. And the shape of
the distribution is nearly normal, with a small
tilt towards negative errors, which is fine in the
precision range from the model. On a physical
level, this means the vision-based regression
model is able to reliably predict oil levels at
less than £3% error. In general, this figure
indicates that the model achieves high stability
and balanced performance, where prediction
errors tightly cluster around the null value. The
absolute prediction errors change in the four
quartile estimates of the true oil levels (Q1, Q2,
Q3, and Q4) in Figure 10. Within the low-level
range (Q1), with a median absolute error of
1.4%, a spread of up to 3.3%, moderate
variability is exhibited by the weak visual
discrimination observed in the sight-glass at
low oil heights. Errors decrease significantly in
the second quartile (Q2), with a median of
0.7% and the majority of the sample under 2%,
suggesting that prediction accuracy in mid-
lower level is relatively high. For the third
quartile (Q3),observe similar performance with
a median near 1.0% and only a small outlier
above 3.5%, which has the effect of increasing
the upper whisker slightly. At high level (Q4),
the median error increases to ~2.0%,
interquartile  range becomes wider and
maximum deviations exceed 4%, mainly
because of reflection and surface glare near the
tank’s top. All in all, the fewest errors are
found in the mid-range quartiles (Q2-Q3)
confirming that the model achieves high
accuracy in the central fill region. The greater
distribution at upper extremes (Q1l and Q4)

reflects the influence of lighting and visual
aberration at the bottom and upper parts of
sight-glass. When oil level varies by 25%-75%
tank capacity, this means that the computer
vision system is the most reliable. To
summarize, the boxplot indicates that
prediction uncertainty increases at the visual
limits of the tank but is kept within £4% across
all quartiles.
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Figure 9. Error density distribution for oil level
prediction
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Figure 10. Absolute error distribution across true level
quartiles

The corresponding test examples for
ground truth (GT) and predicted (Pred) oil
levels, as predicted by the Deep Learning
Visual System, are given in Figure 11. The
sight-glass region of the oil storage tank is
illustrated with the lower and higher fill levels
for each sub-image. In the upper row of the left
image (GT = 85.5%, Pred = 94.8%) there is a
small overestimation of +9.3% where at the
top, bright oil reflections induce a higher fill
boundary detection by the network. The middle
image (GT = 18.7%, Pred = 25.7%) has
overprediction at low levels due to the low
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light level and the slight contrast between oil
and background. Right image (GT = 20.9%,
Pred = 24.5%) has good agreement with only a
+3.6% deviation, therefore a stable model's
sensitivity in the lower region. In the bottom
row is left image (GT = 83.7%, Pred = 72.9%),
an underestimate of —10.8%, which can be
mostly attributed to reflection noise reducing
boundary clarity. The middle image (GT =
75.8%, Pred = 92.7%) leads to a +16.9%
overestimation since specular highlights are
misleading. Finally, the lower right image (GT
= 78.9%, Pred = 70.6%) of the correct position

mE QS

GT=85.5% | Pred=94.8% &, E e

GT=83.7% | Pred=72.9%

GT=18.7% | Pred=25.7%

GT=75.8% | Pred=92.7%

produces a —8.3% underestimation as well,
again a consequence of inadequate light supply
at extreme fill levels. Thus, on the whole, the
visual results indicate a good performance of
the model in monitoring the vertical liquid
boundary well although the uncertainty for
extreme lighting or reflection conditions is a
little more. Physically, this implies that the
vision-based oil level scheme performs well in
different tank fills, with few discrepancies
being attributed to optical effects on the sight-
glass surface.

GT=20.9% | Pred=24.5%

GT=78.9% | Pred=70.6%

Figure 11. Visual comparison between ground truth and predicted oil levels

Figure 12 A summary shows the model’s
performance toward predictions to five
different levels of oil (20%, 40%, 60%, 80%,
and 100% oil) in the storage tank. With the
number indicating a labeled mark on vertical
sight-glass showing a training or a testing state,
the classification accuracy can be found on the
right. The model outperformed them at 20%
level, which reflects its reliable level of
detection, even in lower illumination regions.
At the 40% level the highest accuracy of 96.7%
was achieved, indicating the most sharp
contrast between the visual oil and the visible
air and was capable of accurate and meaningful
boundary determination. The accuracy only
reduced to 92.8% at 60%, mainly attributed

with intermediate refraction and reflection
effects from the glass interface. It indicated that
it is a well-conventional detection in upper mid
level where visual appearance has not been
degraded, with 95.4% accuracy at this 80%
level of analysis. At full capacity (100 percent),
accuracy decreased slightly to 93.2% as
reflection saturation and top-edge glare can
block out the liquid interface. Total accuracy is
still above 92% in all cases, indicating the great
robustness of the deep learning vision.
Physically, this verifies that the Al-based
camera sensor can accurately quantify oil
levels over the full fill range by little deviation.
The results of the figure successfully conclude
that the system's performance remains stable
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across varying fluid heights with the greatest
accuracy reaching the mid-level of the tank.

0il Storage Tank — Accuracy at Different Levels

—100% Lewvel | Accuracy: 93.2%

— 80% Level | Accuracy: 95.4%

— 60% Level | Accuracy: 92.8%

— 40% Level | Accuracy: 96.7%

—20% Level | Accuracy: 94.3%

Figure 12. Oil storage tank accuracy visualization at
different liquid levels

The quantitative validation of the deep
learning vision system for oil-level prediction
is presented in Table 1. Overall MAE = 8.46%,
RMSE = 10.53% which means that the model
can estimate oil levels with an error of less than
+10%. A relatively high R2 = 0.8347 reflects a
strong fit between predicted and actual values
that proves the reliability of the model. The 3-
class accuracy is shown on the same scale as
the Low, Medium, and High levels and
obtained 81.1%. The High-level class showed
the best trade-off between precision and recall
(F1 = 0.895), which was followed by the Low-
level class (F1 = 0.769) overall. The Medium-
level class (F1 = 0.696) performed less well on
the comparison and this may reflect that the
mid-fill images have overlapping intensity
features between the two groups. As such,
while these results demonstrate that the vision-
based system is more accurate at higher oil
levels, improvements in the mid-range
detection can increase uniformity at all fill
conditions.

Table 1: Statistical performance metrics for the oil-
level detection model

Metric Value Description

Represents the average
Mean deviation between

Absolute 8.464 % predicted and true oil
Error (MAE) levels, indicating high
accuracy.
Reflects the overall
Root Mean prediction variability;
Square Error  10.530 % slightly higher than MAE
(RMSE) due to occasional large

errors.

Coefficient of Shows that 83.47% of the
Determination 0.8347 variance in actual oil levels
(R is explained by the model.

Indicates that 81.1% of

3-Class samples were correctly

Accuracy 0.811 classified into Low,
Medium, or High levels.
Balanced accuracy for the
F1 Score 0.769 Low-level class with
(Low) ' Precision = 0.833 and
Recall =0.714.
Moderate performance in
F1 Score 0.696 the mid-level range with
(Medium) ' Precision = 0.615 and
Recall = 0.800.
Excellent recognition of
F1 Score 0.895 high fill levels with
(High) ' Precision = 0.944 and

Recall = 0.850.

4. Conclusions

In this research, have developed an
Autonomous Robotic Inspection System which
will be used for oil tank level detection based
on a combination of deep learning and smart
vision sensors, indicating a high level of
accuracy, reliability and stability in oil level
predictions. Results show a Mean Absolute
Error (MAE) of 8.46%; Root Mean Square
Error (RMSE) of 10.53% and a Coefficient of
Determination (R?) of 0.8347 in the deep
learning vision model which confirms good
correlation between predicted oil level and
actual oil levels. Accuracy measured for 3-class
classification was 81.1%, meaning that the
majority of samples were correctly classified
into Low, Medium, and High. Among them,
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the High-level class had the highest
classification accuracy (F1 = 0.895), followed
by Low (F1 = 0.769) and Medium (F1 =
0.696), indicating outstanding recognition at
larger levels of fill and good generalization
between all categories. Graphical and statistical
analysis showed uniform error reduction during
the training, with the best final RMSE
converging near 0.10 showing the stability and
absence of overfitting of the model. Mark-up of
the error distribution and residual plots
indicated that the majority of the predictions
were within +3% tolerance and the visual
comparisons also suggested that the detection
of boundaries was accurate even in reflective or
poor light conditions. Physically, the device
accurately measured the oil level changes over
the whole sight-glass range (20%-100%), with
an accuracy rate around 92%. Finally, the
combination of deep learning algorithms with
smart camera sensors offers a solid non-
invasive automated approach to oil-level
monitoring of industrial storage tanks. Due to
the high accuracy and generalization of the
achieved system, it seems promising to be
employed in real time for refinery processing,
predictive maintenance or industrial process
monitoring in an effort to mitigate the potential
of manual inspections and enhance the
operational capability.
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