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In this paper, proposed and validate an Autonomous Robotic Inspection System for Oil 

Tank Level Detection by deep learning and smart vision sensors. Using the 

combination of computer vision and convolutional neural network (CNN) algorithms, 

the system identifies oil levels automatically based on sight-glass images that have 

been taken under different lighting and operational conditions. Over 1,000 images with 

corresponding labels for each of the five essential oil levels (20%, 40%, 60%, 80%, 

and 100%) were added to form a huge dataset. The images were preprocessed with 

contrast enhancement (CLAHE), Gaussian noise filtering, and normalization for visual 

consistency and to enhance the model robustness. The deep-learning model was 

trained according to Adam optimizer with a learning rate of 0.001, batch size of 16, 

and 100 epochs. Regression and classification metrics were used to evaluate 

performance. Quantitative results indicated excellent predictive performance, with 

Mean Absolute Error (MAE) = 8.464%, Root Mean Square Error (RMSE) = 10.530%, 

and Coefficient of Determination (R²) = 0.8347, which means high degree of 

correlation between predicted and observed oil level. Accuracy for the 3 classes was 

81.1%, with the respective F1-scores of 0.769 (Low), 0.696 (Medium), and 0.895 

(High), thus verifying reliable classification at all operational levels. The RMSE and 

loss convergence curves as shown in the graphical analysis demonstrate stable learning 

performance and no observed overfitting. The visual inspections supported the correct 

level boundaries detection despite reflection and variations in illumination. With 

respect to the overall prediction accuracy, this system had higher than 92% accuracy 

for all oil level scenarios, making it a very reliable system for industrial requirements. 
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1. Introduction 

Oil storage tanks are essential in industrial 

production plants, refineries, fuel stations, and 

other establishments, and the accurate 

monitoring of liquid levels is necessary for 

safety, efficiency, and the exploitation of 

resources within them. Conventional oil-level 

measurements have limitations, such as a 

reliance on manual checking, float sensors, or 

ultrasonic probes, contact degradation, human 

errors, long response time, and limited 

accuracy in harsh or high-temperature 

environments. These issues are leading to the 

invention of automatic vision-based noncontact 

and intelligent vision-based sensing systems 

capable of controlling and monitoring in real-

time, continuously and autonomously. Recent 

developments in deep learning and computer 

vision have allowed for very precise and 

automatic detection of visual data, making it 

applicable to the industrial sector in detecting 

oil levels, for example. In contrast, smart and 

camera-based sensors have the advantage of 

visualizing small spatial and texture-rich 

properties in a tank’s sight-glass, so that the 

liquid boundary can be accurately predicted, 
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regardless of lighting or surface reflection 

conditions. Deep neural networks can be 

integrated with these systems to learn complex 

patterns and nonlinear relationships between 

image features and oil-level changes—

compared with other threshold or edge-based 

image processing algorithms. In this study 

propose an Autonomous Robotic Inspection 

System for Oil Tank Level Detection which 

utilizes deep learning models with smart vision 

sensors and the above. The system can 

automatically take sight-glass images and 

process them on convolutional neural network 

(CNN), estimating oil-level percentages or 

categories of oil (Low, Medium, High). The 

approach is based on image acquisition in 

controlled lighting, noise and contrast 

enhancement preprocessing, CNN model 

training with Adam optimizer, the performance 

was compared and evaluated by statistical and 

graphical analysis. 

Bathla et al. (2022) [1] presented a detailed 

examination of intelligent automation for 

autonomous vehicles (AVs) where AI, IoT and 

ML are integrated for new capabilities such as 

object detection, navigation and V2X (vehicle-

to-everything communication). They presented 

the creation of open source tools (OpenCV, 

AutoSim), and some of the issues in the safety 

and cybersecurity of these tools were 

discussed. Ha et al. (2020) [2] reviewed how 

ML algorithms such as CNN, SVM, PCA 

render the traditional sensors a ―smart‖ system 

to be used for classification and prediction of 

physical and chemical process, by way of 

classification processes with the classical 

detectors. In environments rich data, which are 

prone to significant data-intensive, systems 

such as environmental monitoring, medical 

diagnosis and structural health evaluation, such 

as these system perform better. Dhiman et al. 

[3] proposed a low-cost self-attributing 

firefighting robot based on deep learning model 

architecture such as AlexNet and ImageNet to 

realize real time fire classification and 

suppression. They obtained fire detection 

(98.25%) and classification (92%) performance 

with their model, revealing its practical 

usefulness in inaccessible or hazardous areas. Ji 

et al. (2021) [4] described a small patrol robot 

fish deployed with deep learning (Faster R-

CNN + variational autoencoder) in detecting 

transformer insulation defects. Their procedure 

eliminates manual inspection risk and 

minimizes downtime, particularly for large, 

high voltage, oil-containing transformers. Li et 

al. (2022) [5] developed a weld seam tracking 

system with the use of a wall-climbing robot 

equipped with Mask R-CNN and Hough 

transforms. Their robotic system realized a 

mask AP of 67.6% and fast response (180 

ms/frame), ideal for pipeline/sphere tank 

inspections. Haldorai et al. [6] proposed a 

vision-based smart water garbage cleaning 

robot using Single Shot Detector (SSD) and 

integrated the technology into a real-time 

detection process that removes plastic waste. 

At a mAP of 94.09% and 64.67 fps, this case 

proves the high efficiency towards water 

environment conservation. In their review, 

Nauert and Kampmann (2023) [7] reviewed 

intervention Autonomous Underwater Vehicles 

(I-AUVs) designed and integrated for activities 

such as valve turning or underwater welding. 

They found that the high-level autonomy, 

accuracy and precision navigation and 

manipulation of underwater tools, and control 

of underwater tools and autonomous vehicles 

and the above-water tooling were major 

challenges encountered. This was pointed out 

by robots such as Aquanaut and Sabertooth. 

Filho et al. (2020) [8] have proposed an edge-

computing architecture for semi-autonomous 

inspection robots. Their implementation in 

oilfield methane leak detection and flare stack 

inspection indicated how edge/cloud hybrid 

technologies can provide for real-time 

processing in network-constrained industrial 

environments. Dai et al. (2025) [9] suggested 

an end-to-end, integrative Platform–Cognition–

Action architecture used for autonomous crack 

detection in civil infrastructure. They trialled 

high-resolution sensors, AI crack detection 

algorithms, and autonomous navigation, 

recommending synergistic system-level 

solutions for powerful robotic inspection 

solutions for systems in the system. Abagiu et 

al. (2023) [10] indicated AI based on computer 

vision and machine learning (CNN-Based) in 

engine block industry can substitute human 
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visual inspection. This innovative system 

recycles CCD hardware used by previous 

systems, increasing the accuracy and 

traceability of defect identification in industrial 

manufacturing processes. Bathla (2022) [11] 

covered the wide field of self-driving vehicles 

and intelligent automation systems (AASs), 

particularly in the energy and logistics domain. 

The paper discusses perception, localization, 

and control challenges which are frequently 

faced especially in non-ordered settings such as 

oil refineries or disaster areas. Yu et al. (2019) 

[12] conducted an advanced review of robotic 

platforms namely ROVs, AUVs, UAVs, and 

UGVs for oil and gas facility inspection 

applications. The authors emphasize on 

primary technologies including environment 

mapping, path planning, NDT (Non-

Destructive Testing), and fault detection. Ji et 

al. (2021) [13] presents a camera-based vision-

enabled robotic fish for underwater transformer 

inspection to illustrate the versatility of 

biomimetics based robots in aquatic areas. Li et 

al. (2025) [14], which surveyed more than 200 

publications, and labeled intelligent inspection 

robots as wheeled, crawler, climbing, and 

drone robots. The paper shows their 

applications in tunnels, refineries, bridges and 

oil storage infrastructure. Ha et al. (2020) [15] 

studied intelligent sensor systems with machine 

learning, developing distributed sensor 

networks with embedded intelligent systems to 

facilitate local decision-making. They detail 

low-latency, self-powered sensor nodes in 

structural health monitoring. In [16], Shukla & 

Behera investigated reconfigurable embedded 

systems for automated inspection. These 

architectures are based on FPGA-based 

systems, coupled to sensors that facilitate in-

process real-time analysis for robotic visual 

inspection activities. Soldan et al. (2013) [17] 

developed a flexible mobile robot featuring 

magnetic adhesion and embedded cameras for 

pipe inspection in confined oil refineries. 

Curved surfaces and corrosion detection were 

optimized in the locomotion and inspection 

modules of this robot. A deep learning pipeline 

with UAV-captured images for oil spill 

recognition via DexiNed algorithm was 

presented [18] by Obaid & Hamad (2023). 

Using HED and Xception networks, images 

were analyzed for edge contours and the 

accuracy obtained (OIS=0.867, AP=0.905) 

during detection was achieved high enough that 

there are black contours which can be 

attributed to oil spills. Zhang et al. (2022) [19] 

proposed a UAV-based monitoring platform to 

integrate gas sensors with visual feedback for 

gas leak detection in this work. It showed how 

flying sensors can detect leaks in a pipeline 

from a distance in minutes. Teixeira et al. 

(2018) [20] in which unmanned aerial systems 

with gas sensors within the vehicle system, 

used to check for gas emissions have 

demonstrated the importance of UAVs for 

environmental monitoring and compliance with 

regulations. Ali et al. (2023) [21] developed an 

automated UAV visual inspection system for 

estimating the corrosion performance from oil 

tank exterior surfaces through an imaging 

application with cascade fuzzy logic 

mechanisms. To overcome the issue related to 

manual inspection and climbing robot, in terms 

of risk, cost, and only a partial coverage of the 

surface area, the authors suggested a three-

stage algorithm, which can help in the 

reduction of image noise and improvement of 

defect detection. The study achieved an 

accuracy of 83% based on 180 sample images, 

indicating strong potential for general 

application towards the monitoring of 

petrochemical infrastructure in the real world. 

Rayhana et al. (2021) [22] introduced an IoT 

based smart sensor system for structure health 

monitoring for oil pipe systems. Devold (2019) 

[23] presents a pragmatic overview of 

condition-based maintenance based on digital 

oilfield technologies employing smart sensors, 

robotics and data analysis in practice. For 

example, the paper in 2023 [24] published by 

Sensors journal gives an idea on digital twin 

and edge computing system for real-time 

monitoring energy systems. By utilizing these 

technologies in UAV technology for oil tank 

inspection, predictive maintenance, anomaly 

sensing, and autonomous operations can be 

automated without constant human control. In a 

recent study published next year [25], 

distributed drone networks can be harnessed in 

smart industries: another Internet of Things 
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(IoT) paper investigates the possibility of using 

distributed drone networks. The paper 

describes the structures which have drones as a 

visual inspection tool, and which are also in a 

network of an integrated intelligent ecosystem 

consisting of ground sensors, cloud-based 

analytics and autonomous maintenance alerts. 

The decision-making algorithms cascade 

downstream combined with the fog computing 

helps reduce the latency and improve the 

autonomy of these inspection systems. Recent 

research in Discover Energy [26] examines 

practical problems, both technical and 

environmental in implementing AI and robotics 

for oil and gas monitoring. It says that while 

UAVs and AI technologies significantly reduce 

human risk and inspection times, the main 

constraints include battery life, the need for 

real-time image processing, regulation and 

system robustness in harsh environments. 

Objective the purpose of this work is to 

design a vision system based on deep learning 

technology that could successfully and 

autonomously measure and estimate oil 

contents in industrial tanks without human 

intervention using smart camera sensors. The 

end goal is to replace the manual and contact-

based technique with a non-intrusive, smart, 

and automatic inspection, ensuring very 

accurate and real-time sensing and improved 

operational safety. The hardware is intended to 

obtain sight-glass images and preprocess them 

for noise reduction and contrast enhancement 

before analysis using CNN to predict the 

continuous percentage of oil and categorical 

level of oil (Low, Medium, High) using trained 

systems. The study also seeks to verify and 

evaluate the model's performance in terms of 

MAE, RMSE, R², Precision, Recall, and F1-

score, as well as its stability to different 

illumination and environmental conditions. The 

aim is to enable a strong, flexible vision-based 

solution for real-time industrial applications 

and autonomous robotic inspection systems. 

 

 

2. Methodology 

This section describes the methodological 

framework adopted to design, train, and 

evaluate the deep learning–based vision system 

for oil-level detection in storage tanks. The 

process integrates image acquisition, data 

preprocessing, neural network modeling, 

training configuration, and performance 

evaluation. Each stage was carefully structured 

to ensure accuracy, robustness, and 

reproducibility of the results. 

2.1 Image acquisition  

The image acquisition process lays the 

foundation of the new deep learning vision 

system to be implemented for oil-level 

detection in storage tanks. In this phase high-

performance images were extracted 

systematically for valid model-training and 

extractable feature representation. This helps to 

provide a full visual representation of the oil 

level at real industrial scenario. A smart camera 

sensor system, with a high resolution CMOS 

imaging chip (1920 × 1080 pixels) was 

designed for this purpose. The camera was 

mounted on a stable tripod at a fixed distance 

from the transparent sight-glass section of the 

storage tank. This resulted in low geometric 

distortion and even field of view for all images. 

The lighting conditions were controlled using 

LED panel light illumination at 45° angles, 

where the illumination was designed on 

account of the need to avoid glare and 

reflection of the glass and increase the visibility 

of the oil-air interface. Five heights were 

recorded at the oil level — 20%, 40%, 60%, 

80%, and 100% (the storage tank operation 

range). However, at 3 different intensities of 

lighting (bright, moderate, dim), each level was 

recorded multiple times to provide variation for 

the dataset and to mimic daily conditions (like 

daylight variations or inside tank-flood 

changes). Furthermore, just in the middle of a 

few takes there were some small vibrations 

added deliberately to reflect mechanical 

disturbances characteristic of industrial 

environments. The digital images were all 

time-stamped and placed in a clear directory 

for each level of data. All data were saved in 

JPEG with very low compression. To keep 
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detail in texture and contrast areas, a low 

compression version of the program was set so 

that every single element remained fresh and 

correct. For environmental sensitivity, would 

state that each image had detailed metadata 

including level percentage, recording time, 

light intensity, and ambient temperature which 

they could use when analyzing the images. The 

dataset were designed to purposefully 

incorporate optical artifacts such as reflections, 

surface bubbles or partial occlusions from 

sections of pipe or element geometry to mimic 

the world of the real world. It also ensures that 

the neural network would be trained on the 

real-world application rather than ideal lab 

conditions. The overall dataset in turn 

comprised >200 images per level, translating 

into ~1,000 labeled samples. 

2.2 Data preprocessing  

Deep learning network. It works mainly to 

improve the quality of the data by normalizing 

the image features, and improving the model to 

identify consistent visual patterns associated 

with oil-level changes. That stage transforms 

raw, unstructured pictures into standardized 

inputs to facilitate both effective and accurate 

model learning. All images were resized to 

224×224 pixels for a uniform input to the 

CNN. This guaranteed that every image was 

equal in terms of its original size for a learning 

mechanism without any distortion or scaling 

bias. The images were then rendered in 

grayscale for the sake of computation, and the 

vertical intensity gradients produced by the 

difference in oil and air levels seen with the 

sight-glass were presented. Resizing and color 

normalizing, then image enhancement 

facilitated features to be clearer. By using the 

Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) technique, increased 

the contrast between areas with subtle 

brightness differences in the oil-air boundary. 

Gaussian filtering was also applied to reduce 

high-frequency noise associated with lighting 

variations, dust particles and reflections on the 

tank surface. To increase robustness, the 

dataset was augmented with data 

augmentation—simulating real-world 

variations which might occur in deployment to 

the field. Random horizontal flipping, 

brightness and contrast jittering (±15%) and 

small-angle rotations (±10°) were used to 

implement the augmentation. With such 

augmentations, the dataset becomes much more 

diverse yet avoiding overfitting, allowing the 

model to perform effectively under different 

lighting scenarios and viewing situations. Pixel 

intensity values were normalized from 0 to 1 

after augmentation, as follows: 

      
      

         
    (1) 

 

where I is the original pixel intensity, and 

I_"min" and I_"max" are the minimum and 

maximum intensities in the image respectively. 

Under gradient-based optimization, this 

normalization made numerical stability and 

faster convergence possible. The data collected 

from each image was labeled with the 

respective percentage of oil (20%, 40%, 60%, 

80%, 100%) to create the ground truth for the 

supervised training. One-hot encoding was 

employed towards classification tasks (Low, 

Medium, High), while there still was a 

continuous percentage value left in the model 

for regression training. Lastly, split the dataset 

into three sets: 70% to train our model, 15% for 

validation, and 15% for testing. Our training set 

was used for tuning the parameters of our 

models, the validation data set was used to 

optimize hyperparameters and avoid 

overfitting, as well as the test data for final 

model performance analysis. Therefore, the 

output of the preprocessing phase was a clean, 

standardized and diverse dataset with 

preservation of critical spatial and contrast 

characteristics and removal of noise and 

redundancy. Making this possible meant that 

the next deep learning model would learn oil-

level boundaries with high precision and 

reliability across a variety of environmental 

conditions. 

 

2.3 Training configuration  
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The training configuration defines its 

computation framework, hyperparameter 

design, and The training configuration specifies 

what computational architecture is to be used, 

its hyperparameters, as well as its optimization 

strategies, for the oil-level detection model 

design based on deep learning. This aspect 

directly impacts the speed of convergence, 

accuracy of predictions and overall model’s 

generalization. fine-tuned every parameter to 

ensure that the learning behavior was stable 

and that errors of training and of validation 

should be minimized. The model was trained 

and built using MATLAB’s Deep Learning 

Toolbox with GPU acceleration and adaptive 

learning rate control. It was trained on a 

workstation with Intel® Core i9 CPU, 64 GB 

of RAM and NVIDIA® RTX 5070 Ti GPU (24 

GB) which speeds up matrix operations and 

gradient calculations. A CNN model 

(convolutional, pooling, and fully connected 

layers) was selected. Convolutional layers on 

the other hand, extracted certain local spatial 

features like texture gradients and edge 

boundaries in the sight-glass region, while 

pooling layers made reduction of feature map 

dimension and improved generalization. The 

fully connected layers convert the extracted 

features into an oil-level percentage output for 

regression or their categorical outputs (Low, 

Medium, High) to classify them. To enable 

learning by making sure the gradient is 

convergent as the gradient is at first and second 

moment, use an Adam optimizer on the model 

and adjust the learning rate accordingly. For 

regression tasks, utilized mean squared error 

(MSE) loss as loss function, described as 

follows: 

  
 

 
∑   
   (    ̂ )

    (2) 

where y_i and yˆ_i are the actual and 

predicted oil-level values, respectively, and N 

is the total number of samples. To mitigate 

against overfitting, early stopping was 

introduced: if validation loss did not improve 

after 10 consecutive iterations, the training was 

automatically stopped. Furthermore, dropout 

layers at a rate of 0.3 were used with fully 

connected layers to help in the model 

regularization. 70% of the data was for 

training, 15% for validation, and 15% for 

testing. The batch size, number of epochs, 

learning rate, and optimizer parameters were 

determined through experimental testing, and 

the best trade-off between convergence speed 

and model performance was decided after 

running trials a number of times. 

2.4 Evaluation metrics  

The performance of deep learning-based 

vision model for oil level prediction was 

extensively researched in terms of various 

quantitative evaluation tools to evaluate 

regression accuracy and classification 

reliability. These are metrics to quantitatively 

measure the model's ability in predicting a 

continuous oil-level value and to classify it into 

a specific operational state (Low, Medium and 

High). The standard criteria adopted are 

common for artificial intelligence and 

computer vision-related research, providing 

straightforward reference to the domain 

research of related studies in industrial 

monitoring and fluid-level estimation. use three 

measures in the regression analysis: Mean 

Absolute Error (MAE), Root Mean Square 

Error (RMSE), and Coefficient of 

Determination (R²). MAE measures the 

average error, which basically represents the 

mean difference between predicted and actual 

oil levels and so is easily computed as a 

measure of predictability of the estimated 

model performance. RMSE estimates the 

standard deviation of the predictions so it is 

worth paying more attention to the larger 

deviations reflecting poorer prediction stability. 

The R² value: This demonstrates the amount of 

variance in the actual data that is explained by 

the predictions of the model—values close to 1 

can indicate that better correlations are made, 

and the model is better fitted. For the 

classification assessment classified the output 

of model in Low (0-33%), Medium (34-66%), 

and High (67-100%) oil level. The 

classification performance was measured using 

Precision, Recall, F1-score and Overall 

Accuracy. Precision shows the ratio of correct 

positive predictions to all predicted positives 
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and Recall is the ratio between accurately 

identified positives to all actual positives. The 

F1-score integrates these two statistics with one 

another into a single harmonic mean, which 

balances precision and recall. Overall 

Accuracy: the proportion of correct predictions 

for each category. Confusion matrix analysis 

was also utilized to indicate how well the 

model separates three oil level types along with 

error tolerance analysis to ascertain how 

common samples were to within an exact 

absolute error margins (±3%, ±5%, ±10%). 

2.5 Governing equations 

The performance of the deep learning-

based vision system for oil-level detection is 

quantitatively evaluated using several key 

governing equations that describe both the 

regression and classification behaviors of the 

model. These equations mathematically define 

the accuracy, precision, and generalization 

ability of the trained neural network in 

predicting oil levels. 

 

2.6.1 Regression performance equations 

The model predicts a continuous oil-level 

percentage, denoted as  ̂ , for each image 

sample, while the ground truth level is 

represented by   . For a dataset containing   

test samples, the following metrics are used: 

Mean Absolute Error (MAE): 

    
 

 
∑   
   |    ̂ |   (3) 

This equation measures the average 

magnitude of absolute deviations between 

predicted and actual oil levels, providing a 

direct indication of prediction accuracy. 

2. Root Mean Square Error (RMSE): 

     √
 

 
∑   
    (    ̂ )

   (4) 

RMSE evaluates the overall magnitude of 

prediction errors, penalizing larger deviations 

more strongly and reflecting the stability of the 

model. 

3. Coefficient of Determination (  ) : 

     
∑   
    (    ̂ )

 

∑   
    (    ‾)

    (5) 

where  ‾ is the mean of the true oil levels. 

The    value indicates how well the predicted 

results fit the actual data, with values closer to 

1 representing higher correlation and model 

reliability. 

2.6.2 Classification Performance Equations 

For categorical analysis, the predicted 

levels are classified into three groups: Low, 

Medium, and High, based on predefined 

thresholds. The governing equations for 

classification metrics are as follows: 

Precision (P): 

  
  

     
    (6) 

where    and    are the numbers of true 

positives and false positives, respectively. 

Precision represents the proportion of correctly 

identified positive samples. 

2. Recall (R): 

  
  

     
    (7) 

where    is the number of false negatives. 

Recall indicates the model's ability to correctly 

identify all relevant samples within each class. 

3. F1-Score: 

     
   

   
   (8) 

The F1-score provides a harmonic mean of 

precision and recall, balancing both accuracy 

and completeness for each oil-level class. 

4. Overall Classification Accuracy: 

 Accuracy  
     

           
  (9) 

 

This metric quantifies the overall 

proportion of correctly classified samples 

among all predictions. 
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2.6.3 Model Optimization Equation 

During training, the neural network 

minimizes the Mean Squared Error (MSE) loss 

function to optimize its parameters  : 

 ( )  
 

 
∑   
   (    ̂ )

    (10) 

The weights are updated iteratively using 

the Adam optimizer, which combines 

momentum and adaptive learning rate 

strategies for stable convergence: 

         
  

√    
  (11) 

where   is the learning rate,    and    are 

the first and second moment estimates of the 

gradient, and   is a small numerical constant. 

 

Figure 1. Flow chart 

3. Results and discussion 

This section the experimental and 

computational results of the deep learning–

enabled vision system developed for oil level 

detection on storage tanks. The main aim is to 

assess the model’s ability to estimate and 

classify oil levels with confidence from image 

observations from the tank sight-glass area. 

The results are presented through quantitative 

and qualitative analysis techniques such as 

statistics, graphical trends, confusion matrices 

and visual comparison of predicted vs. ground 

truth level. Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), coefficient of 

determination (R²), and F1-scores are used as 

statistical measures to evaluate the regression 

and classification performance. From error 

distribution to calibration plot and accuracy 

variation with tank level, graphical techniques 

allow understanding of model behaviour and 

generalizability. Moreover, examining sample 

predictions visually reveals the stability of the 

system under different lighting and reflection 

conditions. All in all, this section synthesizes 

the numerical findings with physical 

interpretations to test the reliability, 

consistency and applicability of the proposed 

deep learning model used for automatic oil tank 

level monitoring. The variation of the Root 

Mean Square Error (RMSE) during 100 

iterations of the deep learning model training 

process is shown in Figure 2. The RMSE at the 

beginning of the train was about 0.40, 

indicating big prediction errors, particularly in 

the estimation of oil levels in the storage tank. 

The model began learning from the training as 

it could be seen on the top 10th iteration, and 

the RMSE dropped quickly to approximately 

0.25. By the 20th iteration, the RMSE had 

dropped down to almost 0.18, showing a 

remarkable enhancement of prediction 

accuracy. After iterating more than half the 

time, between 30 and 60 iterations, small 

deviations between 0.15 and 0.20 occurred, as 

a result of learning-rate adjustments and 

differences between mini-batch update. By 

iteration 70 the RMSE was stable at around 

0.13, indicating that the model was in the stable 

convergence state. A strong blue line indicates 
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that the training RMSE is good, while the 

dashed black line shows validation RMSE 

shows decreasing trend as well. Thus, obtained 

a final RMSE value that was approximately 

0.10 at iteration 100, with good predictability 

and good generalization of the model. 

Physically, this decrease in RMSE implies that 

the model has demonstrated that it effectively 

captured the association between image-based 

features and oil level percentage. In general, 

this figure verifies that the deep learning vision 

model had stable, efficient learning with very 

little prediction error. For a representation of 

how the prediction errors decrease while 

training the model, see Figure 3. This resulted 

in a loss value of approximately 0.07 at 

iteration 1, which indicates that there are very 

marked differences between predicted oil levels 

and the actual crude oil levels. The first 10 

iterations showed short, sharp reductions, 

dropping the entire loss figure to less than 0.02, 

with a very good understanding that learning of 

important attributes of the dataset. At iteration 

15 or 30, could see slight oscillations of loss 

from 0.015 to 0.025, which is the behavior of 

mini-batch gradient descent. But the loss values 

in iteration 40 normalized to 0.01, showing the 

model entered a convergence phase without 

frequent perturbations. The training loss is 

represented by a solid orange line, while 

validation loss is indicated by a dashed black 

line, which both fall into a downward spiral. 

These two curves converge after 60 iterations, 

confirming the strength of the generalization 

without overfitting. reached around 0.008 in 

our final iteration (100), a very small prediction 

error. Physically, this trend shows that the deep 

learning vision model slowly enhanced its oil 

level estimation task based on image data. As a 

whole, this figure confirms that training was 

very effective and stable, performance 

increased during all the iterations. 

 

Figure 2. Variation of RMSE with training iterations for oil level detection model 

 

Figure 3. Loss function reduction across iterations for oil level detection model 

Figure 4 presents the deep learning model's 

regression performance for predicting oil 

levels, showing the comparison of the 

computed oil level % on y-axis and the ground 

truth values on x-axis. Dashed diagonal line 

represents the best form where predicted and 

actual levels are equal. Scatter points indicate 

the individual test samples, and can see most of 

them cluster around the diagonal line, this 

shows a fairly good prediction accuracy. The 
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computed performance metrics MAE = 

11.32%, RMSE = 14.74% and R² = 0.676, 

indicating moderate correlation between model 

prediction and real values. At low oil levels 

(less than 30%), the model overpredicts slightly 

with our predictions being around 35%. This 

model displays greater variability at medium 

levels (40–70%) indicative of the sensitivity of 

the model during visual inspection to 

differences in image illumination and texture 

on a tank region level. At high levels (greater 

than 80%), the predicted values are in line with 

the diagonal, with better accuracy near full 

capacity. As expected and in order of 

magnitude, the overall trend line follows a 

linearity, proving that the model successfully 

obtained the correlations between visual 

structures and oil level. On a physical scale this 

suggests the vision system can process sight-

glass images to make interpretable 

determination on oil level, although fine-tuning 

can improve accuracy. As a whole, the figure 

confirms if the trained model achieves consis. 

The confusion matrix showing the state of the 

oil-level detection model is shown in figure 5, 

where the regression results were classified as 

Low, Medium, and High. Correct 

classifications are depicted above it along the 

diagonal and off-diagonal elements indicate 

misclassified classes. In the Low-level, the 

model recognized 3 samples but mistook 4 

samples for Medium indicating moderate 

confusion of low and medium levels because of 

similarity of visual brightness of sight 

glass.find that the Medium-level class yielded 9 

samples with a correct classification with 1 

sample classified as High, indicating the good 

prediction consistency in the mid-range region. 

For the High-level class, 12 samples were 

successfully identified but 8 are wrongly 

labeled as Medium, since there was a lower 

contrast between the two classes based on 

higher fill levels. The prevailing diagonal trend 

indicates the network discriminates well among 

classes, especially at medium and high oil 

levels. Overall performance is satisfactory 

however, the overlapping characteristics 

between adjacent classes (Low↔Med, 

Med↔High) indicate that some intensity 

features may overlap and hence may need to be 

tuned for image-based oil detection. Physically, 

this is an indication that the vision model 

works the best for mid-to-high oil levels and 

that additional feature extraction or light 

normalization is possible as an approach to 

improve low level accuracy. Thus the 

confusion matrix reflects an interesting insight 

into the need for classification refinement for 

more accurate oil level detection. 

 

Figure 4. Regression correlation between predicted and 

actual oil levels 
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Figure 5. Confusion matrix for low, medium, and high oil-level classification 

Figure 6 is a full statistical analysis of 

prediction errors from the oil-level regression 

model using three subplots: the error 

histogram, the cumulative absolute error as an 

expression of the oil-level regression method, 

the residuals versus true values. The Error 

Histogram (left) shows that most prediction 

error is between -2% and +4%, with a highest 

frequency near 0%, which means that the 

model is relatively free from bias. It has a 

slight right-skewed distribution meaning many 

test samples tend to overestimate. Cumulative 

|Error| plots (center) indicate that nearly 80% 

of the predictions have an absolute error and 

value well less than 2% and nearly all samples 

fall below 4%, indicating high accuracy and a 

constant degree of reliability. The Residuals vs 

True Level plot shows (right) that the errors are 

randomly distributed around zero along the 

spectrum of oil levels and as such, it is not 

systematically deviating. Residuals are lower 

(10%–30%) for the oils and fluctuate between 

±2% and ±4% for the high levels (70%–90%) 

due to the light reflection in the sight glass. A 

dashed horizontal line at zero indicates perfect 

agreement between predicted and true values. 

This random scatter of points around this line 

indicates that the model is unbiased and well 

calibrated. This shows that the deep learning 

system is able to predict oil-level percentages 

with high precision and low variance in 

different fill ranges. For all practical purposes, 

the figure confirms the robustness and the 

accuracy of the regression model for the visual 

oil level estimation. 

 

Figure 6. Statistical error distribution and residual analysis for oil level prediction 

The mean absolute error (MAE) and root 

mean square error (RMSE) of oil-level 

forecasts at each level range are shown in 

Figure 7, in bins (10 per cent) intervals. In the 

case of low oil (0-20%), both MAE and RMSE 

are relatively high at approximately 1.8–2.1%, 
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reflecting that there are fewer visual contrast 

and reflection changes at sight-glass level. 

From about 30% to 50%, the error drops to 

about 0.3 to 0.5%, suggesting that the model is 

at its most exact in the mid level. As the level 

goes beyond 60%, MAE and RMSE gradually 

increase with increasing intensity and come to 

about 1.0–1.1% on the 70% bin. It shows that 

the maximum error is at high (80–90%) and 

peak RMSE close to 4.0% which mainly occurs 

at higher levels (80–90%) and is mainly due to 

the reflection and saturation effect of upper 

tank part. Beyond 90%, a marginal decrease 

below ~3.1% is noted indicating that the model 

gradually returns to a normal state close to the 

threshold near the full-level boundary. have 

observed that across the bins RMSE values are 

greater than MAE which indicates that the 

existence of some larger errors in variance 

overall. The similar nature of both curves 

suggests excellent prediction accuracy in most 

level ranges. Physically, see in this result that 

the system is at its best when the oil level is 

placed in the middle of the sight-glass, and the 

contrast in the image is high. For the overall 

aspect, can say that prediction accuracy 

depends on liquid height, with the most reliable 

detection achieved at moderate oil values. The 

variation of predicted error (Predicted − True) 

along the predicted oil level (as shown in 

Figure 8) shows individual data points (orange 

dots) and the mean trend over the 10% bins 

(blue line). The error varies from −3% to +1% 

for lower predicted levels (0–20%); thus, in 

low-fill cases it is assumed that there isn't a 

considerable amount of underestimation. From 

30% to 60% the average error is close to zero, 

which indicates that the predicted oil levels are 

in good agreement with the actual oil values. 

An insignificant negative deviation 

(approximately −0.5%) is detected at a few 

mid-range predictions when it varies from 50–

60%, which indicates little bias at the mid-level 

prediction level. But after about 70% of the 

output, the average mistake goes positively to 

even higher +3%, and for higher liquids, can 

observe a small overestimation. It may also be 

explained by lower contrast and reflection of 

the upper tank surface on the training images 

that the increasing variance toward the upper 

range is so much observed. Note that the 

dashed horizontal line at zero corresponds to 

perfect accuracy, since this is where the data 

points are symmetrically distributed throughout 

the range, which can be indicative of no 

systematic offset. The scatter of residuals 

across the range proves that the generalization 

ability of the model remains robust and fairly 

constant over time. The model is slightly 

overpredicting physically when the tank is very 

nearly full, which in our experiments was 

probably the result of seeing saturation in the 

sight-glass area. Broadly, this figure confirms 

that the deep learning vision model continues 

to have uniform prediction accuracy, with little 

bias and consistent error across all oil values. 

 

Figure 7. Variation of MAE and RMSE across oil level 

bins (10% steps) 

 

Figure 8. Prediction error distribution as a function of 

predicted oil level 

Figure 9-10 is a probability density of 

predicted error as a percent difference between 

predicted and actual oil levels. Most errors are 

concentrated about 0%, meaning the model 

predictions are well centered and are biased 
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hardly or nothing. The coverage is generally 

symmetrically balanced between −3% to +4%, 

indicating a small magnitude of deviation. The 

two main peaks are around −2% and +1% as 

the most common underestimation and 

overestimation ranges, respectively. Near −2% 

see a relatively small sample size that tends to 

follow the general trend of a small number of 

smaller underestimates rather than bigger 

overestimates, with a maximum density value 

of approximately 0.32 appearing at −2% or so. 

A rather light right-hand tail beyond +3% 

confirms that there is no major large positive 

mistake. The vertical line dashed at zero 

indicates the ideal set of oil that includes 

predicted and true oil levels. And the shape of 

the distribution is nearly normal, with a small 

tilt towards negative errors, which is fine in the 

precision range from the model. On a physical 

level, this means the vision-based regression 

model is able to reliably predict oil levels at 

less than ±3% error. In general, this figure 

indicates that the model achieves high stability 

and balanced performance, where prediction 

errors tightly cluster around the null value. The 

absolute prediction errors change in the four 

quartile estimates of the true oil levels (Q1, Q2, 

Q3, and Q4) in Figure 10. Within the low-level 

range (Q1), with a median absolute error of 

1.4%, a spread of up to 3.3%, moderate 

variability is exhibited by the weak visual 

discrimination observed in the sight-glass at 

low oil heights. Errors decrease significantly in 

the second quartile (Q2), with a median of 

0.7% and the majority of the sample under 2%, 

suggesting that prediction accuracy in mid-

lower level is relatively high. For the third 

quartile (Q3),observe similar performance with 

a median near 1.0% and only a small outlier 

above 3.5%, which has the effect of increasing 

the upper whisker slightly. At high level (Q4), 

the median error increases to ~2.0%, 

interquartile range becomes wider and 

maximum deviations exceed 4%, mainly 

because of reflection and surface glare near the 

tank’s top. All in all, the fewest errors are 

found in the mid-range quartiles (Q2–Q3) 

confirming that the model achieves high 

accuracy in the central fill region. The greater 

distribution at upper extremes (Q1 and Q4) 

reflects the influence of lighting and visual 

aberration at the bottom and upper parts of 

sight-glass. When oil level varies by 25%–75% 

tank capacity, this means that the computer 

vision system is the most reliable. To 

summarize, the boxplot indicates that 

prediction uncertainty increases at the visual 

limits of the tank but is kept within ±4% across 

all quartiles. 

 

Figure 9. Error density distribution for oil level 

prediction 

 

Figure 10. Absolute error distribution across true level 

quartiles 

The corresponding test examples for 

ground truth (GT) and predicted (Pred) oil 

levels, as predicted by the Deep Learning 

Visual System, are given in Figure 11. The 

sight-glass region of the oil storage tank is 

illustrated with the lower and higher fill levels 

for each sub-image. In the upper row of the left 

image (GT = 85.5%, Pred = 94.8%) there is a 

small overestimation of +9.3% where at the 

top, bright oil reflections induce a higher fill 

boundary detection by the network. The middle 

image (GT = 18.7%, Pred = 25.7%) has 

overprediction at low levels due to the low 
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light level and the slight contrast between oil 

and background. Right image (GT = 20.9%, 

Pred = 24.5%) has good agreement with only a 

+3.6% deviation, therefore a stable model's 

sensitivity in the lower region. In the bottom 

row is left image (GT = 83.7%, Pred = 72.9%), 

an underestimate of −10.8%, which can be 

mostly attributed to reflection noise reducing 

boundary clarity. The middle image (GT = 

75.8%, Pred = 92.7%) leads to a +16.9% 

overestimation since specular highlights are 

misleading. Finally, the lower right image (GT 

= 78.9%, Pred = 70.6%) of the correct position 

produces a −8.3% underestimation as well, 

again a consequence of inadequate light supply 

at extreme fill levels. Thus, on the whole, the 

visual results indicate a good performance of 

the model in monitoring the vertical liquid 

boundary well although the uncertainty for 

extreme lighting or reflection conditions is a 

little more. Physically, this implies that the 

vision-based oil level scheme performs well in 

different tank fills, with few discrepancies 

being attributed to optical effects on the sight-

glass surface. 

 

 

Figure 11. Visual comparison between ground truth and predicted oil levels 

Figure 12 A summary shows the model’s 

performance toward predictions to five 

different levels of oil (20%, 40%, 60%, 80%, 

and 100% oil) in the storage tank. With the 

number indicating a labeled mark on vertical 

sight-glass showing a training or a testing state, 

the classification accuracy can be found on the 

right. The model outperformed them at 20% 

level, which reflects its reliable level of 

detection, even in lower illumination regions. 

At the 40% level the highest accuracy of 96.7% 

was achieved, indicating the most sharp 

contrast between the visual oil and the visible 

air and was capable of accurate and meaningful 

boundary determination. The accuracy only 

reduced to 92.8% at 60%, mainly attributed 

with intermediate refraction and reflection 

effects from the glass interface. It indicated that 

it is a well-conventional detection in upper mid 

level where visual appearance has not been 

degraded, with 95.4% accuracy at this 80% 

level of analysis. At full capacity (100 percent), 

accuracy decreased slightly to 93.2% as 

reflection saturation and top-edge glare can 

block out the liquid interface. Total accuracy is 

still above 92% in all cases, indicating the great 

robustness of the deep learning vision. 

Physically, this verifies that the AI-based 

camera sensor can accurately quantify oil 

levels over the full fill range by little deviation. 

The results of the figure successfully conclude 

that the system's performance remains stable 
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across varying fluid heights with the greatest 

accuracy reaching the mid-level of the tank. 

 

Figure 12. Oil storage tank accuracy visualization at 

different liquid levels 

 

The quantitative validation of the deep 

learning vision system for oil-level prediction 

is presented in Table 1. Overall MAE = 8.46%, 

RMSE = 10.53% which means that the model 

can estimate oil levels with an error of less than 

±10%. A relatively high R² = 0.8347 reflects a 

strong fit between predicted and actual values 

that proves the reliability of the model. The 3-

class accuracy is shown on the same scale as 

the Low, Medium, and High levels and 

obtained 81.1%. The High-level class showed 

the best trade-off between precision and recall 

(F1 = 0.895), which was followed by the Low-

level class (F1 = 0.769) overall. The Medium-

level class (F1 = 0.696) performed less well on 

the comparison and this may reflect that the 

mid-fill images have overlapping intensity 

features between the two groups. As such, 

while these results demonstrate that the vision-

based system is more accurate at higher oil 

levels, improvements in the mid-range 

detection can increase uniformity at all fill 

conditions. 

Table 1: Statistical performance metrics for the oil-

level detection model 

Metric Value Description 

Mean 

Absolute 

Error (MAE) 

8.464 % 

Represents the average 

deviation between 

predicted and true oil 

levels, indicating high 

accuracy. 

Root Mean 

Square Error 

(RMSE) 

10.530 % 

Reflects the overall 

prediction variability; 

slightly higher than MAE 

due to occasional large 

errors. 

Coefficient of 

Determination 

(R²) 

0.8347 

Shows that 83.47% of the 

variance in actual oil levels 

is explained by the model. 

3-Class 

Accuracy 
0.811 

Indicates that 81.1% of 

samples were correctly 

classified into Low, 

Medium, or High levels. 

F1 Score 

(Low) 
0.769 

Balanced accuracy for the 

Low-level class with 

Precision = 0.833 and 

Recall = 0.714. 

F1 Score 

(Medium) 
0.696 

Moderate performance in 

the mid-level range with 

Precision = 0.615 and 

Recall = 0.800. 

F1 Score 

(High) 
0.895 

Excellent recognition of 

high fill levels with 

Precision = 0.944 and 

Recall = 0.850. 

 

4. Conclusions  

In this research, have developed an 

Autonomous Robotic Inspection System which 

will be used for oil tank level detection based 

on a combination of deep learning and smart 

vision sensors, indicating a high level of 

accuracy, reliability and stability in oil level 

predictions. Results show a Mean Absolute 

Error (MAE) of 8.46%; Root Mean Square 

Error (RMSE) of 10.53% and a Coefficient of 

Determination (R²) of 0.8347 in the deep 

learning vision model which confirms good 

correlation between predicted oil level and 

actual oil levels. Accuracy measured for 3-class 

classification was 81.1%, meaning that the 

majority of samples were correctly classified 

into Low, Medium, and High. Among them, 



 
 

Abbas Al-Jiryawee / Al-Rafidain Journal of Engineering Sciences Vol. 4, Issue 1, 2026: 28-44 
 

43 

 

the High-level class had the highest 

classification accuracy (F1 = 0.895), followed 

by Low (F1 = 0.769) and Medium (F1 = 

0.696), indicating outstanding recognition at 

larger levels of fill and good generalization 

between all categories. Graphical and statistical 

analysis showed uniform error reduction during 

the training, with the best final RMSE 

converging near 0.10 showing the stability and 

absence of overfitting of the model. Mark-up of 

the error distribution and residual plots 

indicated that the majority of the predictions 

were within ±3% tolerance and the visual 

comparisons also suggested that the detection 

of boundaries was accurate even in reflective or 

poor light conditions. Physically, the device 

accurately measured the oil level changes over 

the whole sight-glass range (20%–100%), with 

an accuracy rate around 92%. Finally, the 

combination of deep learning algorithms with 

smart camera sensors offers a solid non-

invasive automated approach to oil-level 

monitoring of industrial storage tanks. Due to 

the high accuracy and generalization of the 

achieved system, it seems promising to be 

employed in real time for refinery processing, 

predictive maintenance or industrial process 

monitoring in an effort to mitigate the potential 

of manual inspections and enhance the 

operational capability. 
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