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Rising penetration of renewable energy sources presents significant challenges to smart grid 

operations, especially in fault detection, power quality, and cost-effective energy management. 

In this research, suggest a smart grid framework with AI-supported IoT that combines real-

time fault detection solution and intelligent load monitoring for the smart grid for grid 

reliability and the renewable energy supply optimization. Electrical and environmental 

information such as voltage, current, frequency, total harmonic distortion, power quantities, 

power factor, and temperature are gathered by IoT sensors and processed through an efficient, 

toolbox-free AI-powered, computationally efficient artificial intelligence model. A custom 

multi-class K-Nearest Neighbors classifier is applied in fault detection with a high sensitivity 

classification accuracy score of 97.67%, perfect detection accuracy for harmonic and 

overcurrent failures and strong classification results for voltage sag, swell and frequency 

deviation events. Concurrently, a mixed-integer linear programming–based optimization 

approach is proposed to plan flexible load utilization and reduce the energy requirement 

associated with grid use in an environment with time-varying tariffs and renewable resources. 

The optimization results indicate that about 700 kWh of renewable energy is used effectively 

as opposed to 490 kWh of grid-imported energy, yet renewable energy curtailment is below 

1%, indicating that demand–supply is good coordination. At the same time, a fault-aware 

optimization framework drastically reduces the total operational cost and renewable energy 

waste and grid dependency, while guaranteeing high reliability in fault detection. The 

solutions demonstrate that the method proposed is suitable for real-time rollout in intelligent, 

reliable, and sustainable smart grid systems. 
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1. Introduction  

The explosive development of renewables, 

including solar and wind power, has greatly 

expanded the shape and process of the current 

electrical power networks. Despite promoting 

sustainability and emission reduction, high 

integration of renewable power sources 

generates challenges connected with power 

quality, system reliability, and operational 

efficiency. The variability and irregularity in 

renewable generation, combined with the 

increasing complexity of the distributed load, 

result in the inability of traditional monitoring 

and control methods for the smart grid of 

today. In this regard, Internet of Things (IoT) 

and its technologies enable continuous real-

time monitoring of electrical and 

environmental parameters across power 

networks. IoT sensors measure voltage, 

current, frequency, harmonic distortion, power 

flow, and temperature in high-resolution, 

forming the basis of data-driven smart grid 

functioning. But large quantities of data don't 

solve grid performance issues on their own 

without intelligent analysis and decision-

making mechanisms. Artificial intelligence 

(AI) has proved out to be a strong method for 

studying complex and nonlinear behaviour of 

smart grid data, especially in fault detection 

and power quality determination. Artificial 

intelligence based models showed higher 

accuracy in abnormal operating conditions 

detection than traditional threshold detection 
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methods. However, most of the published 

literature have primarily been based on fault 

detection and have not considered how these 

can be incorporated into energy management 

and load scheduling, which limits their 

applicability in live grid operation where fault 

and operation decisions are closely linked to 

each other. 

(Adefarati et al., 2025) [1] detailed a 

thorough review discussing how IoT and AI 

contribute to improving the monitoring, control 

and reliability of renewable-dominant power 

systems. Their research highlighted AI-driven 

forecasting and real-time optimization as 

driving factors of high renewable penetration. 

(Alijoyo, 2024) [2] explored deep learning-

based energy management frameworks for 

Industry 4.0 smart buildings. Results showed 

major gains in energy efficiency based on 

predictive control and adaptive demand-side 

management. (Areola et al., 2025) [3] critically 

reviewed AI techniques for optimizing solar 

power systems integrated with energy storage. 

The authors highlighted trends, pointing to 

future directions but also presented problems in 

data quality, scalability, and system 

interoperability. (Arévalo & Jurado, 2024) [4] 

used AI to understand the design and operation 

of distributed energy systems in smart grids. 

Their findings revealed how AI enhances 

dispatch decisions, system flexibility and 

operational resilience. (Awad & Bayoumi, 

2025) [5] described an integrated AI & 

cybersecurity/regulatory perspective of next-

generation smart inverters by incorporating AI, 

cybersecurity and regulatory aspects. The 

research emphasized the significance of 

intelligent inverters as providing grid stability 

during the energy transition. (Bajahzar, 2024) 

[6] investigated the AI-based Internet of 

Everything services for the smart home. 

According to the study, the intelligent 

automation has the positive impacts of 

increasing user comfort, saving energy and 

responding to the system. (Bajwa et al., 2025) 

[7] performed a systematic literature review on 

AI-powered smart building management 

systems. Their findings validated significant 

reductions in energy consumption and 

emissions via AI-centered optimization 

strategies. (Benson & Eronu, 2025) [8] 

evaluated the combination of thermal-based 

power systems with renewable electricity. The 

research highlighted the importance of 

optimization and storage mechanisms to sustain 

the reliability of the grid in response to 

fluctuating amount of renewable energy. (Das, 

2025) [9] investigated the relationship between 

IoT and AI for sustainable and energy efficient 

smart buildings. The paper also found some 

technical obstacles and recommended strategic 

directions for large-scale deployments. 

(Goudarzi et al., 2022) [10] surveyed smart 

grid technologies supporting IoT, which 

includes architecture, application, and 

obstacles. Thus they established a basic 

overview of communication, data analytics and 

security issues. (Ifeanyi Kingsley et al., 2025) 

[11] explored the latest developments in AI 

driven energy management systems for 

renewable integrated smart grids. A study of 

the effectiveness of AI in demand forecasting 

and optimization of energy dispatch was 

identified in the study. (Ikegwu et al., 2025) 

[12] explored the potential of AI and machine 

learning in monitoring and optimizing energy 

consumption in smart homes. Their findings 

indicated greater accuracy in predicting 

consumption and fault detection. (Joshua et al., 

2024) [13] introduced a hybrid machine 

learning model for solar energy potential 

analysis and fault detection in AIoT-based 

solar–hydrogen power plant. The framework 

improved system reliability and predictive 

capability. (Karim et al., 2025) [14] presented a 

preprint study focusing specifically on newly 

deployed AI-driven methodology for energy 

systems analysis. The report highlighted future 

research avenues of intelligent energy 

optimization. (Mahmud & Waheduzzaman, 

2025) [15] studied the contribution of artificial 

intelligence in smart grid technologies in smart 

system design. The research drew attention to 

AI’s role in predicting load, diagnosis of faults 

and also of grid automation. (Mawat & 

Hamdan, 2023) [16] described hydrodynamic 

and water quality modeling methods, which 

were applied for surface water environment. 

Their research contributed knowledge useful in 

the environmental monitoring and sustainable 
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resources management. (Nuruzzaman et al., 

2025) [17] performed a systematic review on 

predictive maintenance for power transformers 

based on AI and IoT. Through diagnostics 

driven by data, the findings suggested reduced 

downtime and improved life for assets. 

(Nuruzzaman & Rana, 2025) [18] focused on 

IoT-enabled condition monitoring for power 

distribution systems. This study focuses on 

SCADA integration, real-time analytics and 

overcoming cyber-physical security issues. 

(Nuthakki et al., 2022) [19] studied the benefits 

to the company with AI-enabled smart meters 

in enhancing customer satisfaction. They found 

that they improved billing accuracy, demand 

awareness, and energy management. (Ojadi et 

al., 2024) [20] for energy efficiency and 

reducing carbon footprint, they examine AI-

enabled smart grid systems for urban networks. 

The findings validated AI’s role in sustainable 

urban energy planning. (Rana, 2025) [21] 

examined AI-driven fault detection and 

predictive maintenance of power systems. 

Digital twins and self-healing grid concepts 

were integrated into the study. (Rojek et al., 

2025) [22] has shown that a case study about 

use of IoT and AI-based applications of IoT to 

save energy in buildings has been delivered 

using the case example of how to integrate IoT 

and AI applications for building energy 

management. The findings showed good real-

time optimization on time, energy consumption 

optimization and reduction in consumption of 

energy use were well presented with an 

effective effect of the results. (Sankarananth et 

al., 2023) [23] proposed AI-enabling 

metaheuristic optimization strategies for 

predictive management of renewable energy 

production. Their method led to enhanced 

predictions and an increase of grid efficiency. 

(Sarin et al., 2025) [24] performed a 

bibliometric-supported systematic literature 

search for AI-based renewable microgrid 

optimization. This study noted some research 

gaps and discussed future directions regarding 

intelligent microgrids. (Stecuła et al., 2023) 

[25] studied AI powered urban energy 

solutions from a local to societal scale. The 

report highlighted the role of AI in realizing 

smart, low-carbon cities. (Udoka Eze, 2025) 

[26] proposed AI-based MPPT model on 

hybrid solar–wind systems for off-grid rural 

electrification. The results indicated increased 

efficiency of energy harvesting and reliability 

of the system.  (Ukoba et al., 2024) [27] 

overviewed AI use cases in refining renewable 

energy systems. Future outlook for intelligent 

control, forecasting, and system integration was 

provided by the study. 

Despite the increasing literature on AI and 

IoT-enabled smart grid applications within a 

wide range of smart grid fields, a number of 

important gaps persist in current research. Most 

previous researches have treated fault 

detection, renewables management and load 

optimization as independent issues and not 

taking into account the high coexistence of the 

issues in everyday smart grid. AI-driven fault 

detection strategies in particular tend to be 

developed as independent monitoring devices 

and are not incorporated into real-time energy 

management or load scheduling decision-

making. Likewise, load optimization studies 

commonly assume the presence of ideal grid 

conditions, ignoring the influence of the power 

quality irregularities and faults on operational 

tactics. The recent contribution of this paper is 

the proposed unified AI-based IoT-based smart 

grid system that combines multi-class fault 

detection and load optimization under 

renewable energy integration. Contrasting to 

previous methods, this research connects the 

real-time fault classification prediction results 

and operational load scheduling to realize 

dynamic, energy-aware fault-analysis. More 

importantly, this method combines electrical, 

power quality and thermal features and 

provides a single AI model’s complete data that 

allows a holistic physical representation of the 

grid behaviour. Furthermore, an AI 

implementation is computationally efficient 

and toolbox-free with a mixed-integer 

optimization formulation that increases 

practical deployability in real-time and 

resource-constrained environments. The 

proposed framework will push the smart grid 

through to operate more reliably, sustainably, 

and even high-smart autonomous systems by 

addressing these gaps. 
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2. Methodology 

2.1 System overview  

Thus, the proposed system is an AI-enabled 

IoT-based smart grid framework, which will 

bring reliable fault detection and cost-efficient 

load optimization during a high renewable 

penetration condition. This is a unified 

architecture consisting of distributed IoT 

sensors, an artificial intelligence decision layer, 

and an energy management module. It collects 

electrical and environmental measures in near 

real-time (voltage, current, frequency, total 

harmonic distortion, power quantities, 

temperature) continuously from core grid nodes 

and sends it to a central processing unit. At the 

analytical level, the obtained data is 

preprocessed and presented to an AI-based 

fault detection model which classifies the grid 

operating state as normal or specific fault 

conditions. Simultaneously, a load and 

renewable energy modeling module predicts 

available solar and wind generation, in addition 

to flexible load capacities. Using these inputs, 

an optimization module will schedule 

controllable loads in a way which allows for 

the minimization of energy cost, while 

operating to satisfy fixed operational 

constraints and maintaining the strength of the 

grid stability. Fault detection/load optimization 

interaction provides the opportunity for 

adaptive and robust operation of the grid from 

an adaptive dynamic system to be able to 

dynamically respond to disturbances and 

renewable variability. Indeed, the presented 

framework offers a scalable and 

computationally effective approach to 

intelligent monitoring and energy management 

in the context of contemporary smart grids. 

2.2 Data and fault modelling 

Here, apply a synthetic IoT dataset to 

model the smart grid operating data that 

represents normal and failing electrical & 

environmental behavior. A total of 6000 

samples are generated, of which 80% (4800 

samples) are for normal operating conditions 

and 20% (1200 samples) are for fault scenarios. 

The eight measured features of each sample 

are: 

- Voltage magnitude (Vpu), 

- Current magnitude (Ipu), 

- Grid frequency (fHz), 

- Total harmonic distortion (THD%), 

- Active power (PkW), 

- Reactive power (QkVAr), 

- Power factor (PF), 

- Temperature (TempC).  

In normal operation, normal values are near 

nominal values like a voltage mean of about 

0.996 p.u., frequency around 50.0 Hz, THD 

around 2%, and temperature of 35.7 °C 

suggesting steady state grid performance. To 

implement physically meaningful deviations 

from the nominal values, fault conditions are 

modeled. Voltage sag faults are described by a 

voltage of no less than 0.75 p.u., and voltage 

swell faults represent a voltage of up to 1.21 

p.u.. Frequency deviation issues bring 

oscillations of 48.35 Hz−51.72 Hz, which 

indicates the generation–load imbalance. 

Harmonic faults are modelled by the THD 

magnitude up to 13.8% which reflect high 

potential for waveform distortion due to non-

linear loads. Current magnitudes of overcurrent 

faults are generally equal to 1.92 p.u. and 

associated temperature rises, peaking at 68.2 

°C, indicating significant thermal burden. Each 

type of fault is assigned another class label, 

allowing the identification of multiple classes 

of faults. Therefore, this data-driven fault 

modeling approach ensures the dataset 

generated reflects real-world physical 

signatures of power quality perturbations which 

can serve as a solid basis for both training and 

evaluating the AI-based fault detection model. 

2.3 AI-based fault detection 

As a second implementation, the fault 

detection module uses a custom K-Nearest 

Neighbors (KNN) classifier for detecting the 
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operating condition of the smart grid based on 

the IoT measurements. KNN was chosen due to 

its simplicity, transparency, and robustness 

along with being suitable for deployment in 

resource-constrained IoT systems. The model 

is a multi-class classification model, in which 

every measurement vector received will be 

assigned to one of six classes — Normal, 

Voltage Sag, Voltage Swell, Frequency 

Deviation, Harmonics, or Overcurrent. All 

features are normalized by using the mean and 

standard deviation of the training data set 

before classification in order to get a balanced 

contribution of each parameter and to avoid the 

dominance of scale before classification. For 

one test sample, Euclidean distance between a 

normalized test vector and all training samples 

will be determined. The class label is then 

established based upon majority voting across 

the k=7 nearest neighbors decided to balance 

sensitivity and noise robustness. A distance-

based decision mechanism to understand such 

information results in the model being able to 

pick up subtle differences in voltage, 

frequency, harmonics, and temperature across 

fault types. In real time the classifier gives a 

discrete fault label, allowing us to quickly 

identify abnormal conditions. Its effectiveness 

is demonstrated through confusion matrices 

and class-wise performance metrics presented 

in the Results section. 

Table 1: Mathematical formulation and parameters of the ai-based fault detection model 

Item Description Mathematical Expression / Value 

Feature vector loT measurement vector                        

Number of features Electrical & thermal parameters 8 

Number of classes Grid operating conditions 6 

Normalization Z-score-based scaling    
   

 
 

Distance metric Similarity measure Euclidean distance 

Distance formula Between test and training sample  (     )  √    
  (         )

 
 

Classifier type Al model K-Nearest Neighbors (KNN) 

Number of neighbors Model parameter     

Decision rule Label assignment Majority voting 

Output Fault classification Normal / Sag / Swell / FreqDev / Harmonics / Overcurrent 

2.4 Load and renewable modelling 

The smart grid load and renewable energy 

subsystems are modeled to reflect the actual 

daily functioning behavior of the system. The 

electricity demand is represented by the 24-

hour base load curve: the load, which fluctuates 

between around 34 kW and 56 kW, reflects 

how typical residential or business uses can be 

handled with higher load in daytime. This base 

load has served to provide a non-controllable 

basis for the system demand. Together with the 

base load, the system comprises flexible 

(controllable) loads, including the HVAC, 

water pumps, and EVs (electric vehicle)-



 
 

Ammar Jalal Abdulrazzaq Al-Tabatabaee / Al-Rafidain Journal of Engineering Sciences Vol. 4, Issue 1, 2026: 01-27 

6 

 

charged units. These loads are represented 

through binary decision criteria fixed 6 kW 

(HVAC), 4 kW (pump), and 7 kW (EV) power 

ratings. Such operational limitations are 

established with defined availability windows 

and requirements for operating time, which 

allow for the satisfying of user comfort and 

service needs while permitting scheduling for 

price decrease and renewable usage. In the 

renewable energy generation model, solar and 

wind power sources are integrated. The solar 

generation profile is diurnal sinusoidal, with a 

peak output of approximately 35 kW in 

midday, denoting clear-sky conditions. Wind is 

treated as a stochastic input at an average 

power of 10 kW and varies over time, yielding 

high cumulative renewable output of up to 43 

kW at the peak times. The total renewable 

energy at each hour is calculated when the 

solar and wind contributions from each day are 

added together. A total system demand of net 

power is derived as the total demand for the 

system is the difference between total load 

(base plus the flexible loads) and renewable 

generation. Where renewable generation 

exceeds demand, excess energy is avoided 

where possible, and any balance is fixed by 

importing electricity from the grid. The 

integrated modeling of loads and renewable 

sources serves as a realistic basis for the 

optimization, allowing for reliable and accurate 

evaluation of renewable penetration, demand 

flexibility, and energy-saving effectiveness in 

the smart grid. 

2.5 Optimization formulation 

The energy management problem is 

defined as a Mixed-Integer Linear 

Programming (MILP) model to plan flexible 

loads of a smart grid with solar–wind 

generation, while minimizing the electricity 

cost of importing electricity from the grid. 

Each day, the decision variables will be binary 

ON/OFF states for controllable loads (HVAC, 

pump, EV) and an hour-per-hour grid import 

power. The output formulation dictates the 

required operating duration for each flexible 

load, respects availability windows, and 

ensures that grid import meets the deficit 

between demand and renewable generation. 

Once renewable generation exceeds total 

demand, grid import is zero and the rest of the 

surplus is treated as curtailment (reported in 

results). The optimization is then solved with 

MATLAB for a 24-hour horizon and hourly 

resolution. 

Table 2: MILP Equations and parameters for smart grid load optimization 

Item Description Equation / Value 

Time horizon Scheduling period                

Flexible loads Controllable devices           (HVAC, Pump, EV) 

Rated powers Fixed power per load              

Required ON-hours Minimum operation time             hours 

Base load Non-flexible demand        , e.g.,          

Renewables Solar + wind generation              , up to        

Tariff Electricity price (c_t \in                        

Binary decision Load status            
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Grid import Purchased power           

Availability window Allowed operation        if not allowed (from allow(     ) ) 

Objective function Minimize grid cost        
       

ON-hour constraint Enforce required operation     
             

Power balance (deficit coverage) Grid must cover deficit                       

Non-negativity Physical feasibility      

Curtailment (reported) Surplus renewable (post-processing)       (   (            )  ) 

2.6 Evaluation metrics 

In order to quantitatively assess the 

performance of the proposed AI-enabled smart 

grid framework, fault detection classification 

metrics and energy management (optimization) 

metrics are employed. For fault detection, the 

predicted class labels are compared with the 

true labels using the confusion matrix, and 

precision, recall, F1-score, and overall 

accuracy are calculated for each fault category 

and for the overall model. To optimize the 

load, economic and operational indicators are 

calculated to measure the effectiveness of 

renewable utilization, grid dependency 

reduction, and cost minimization over the 24-

hour scheduling horizon. 

 

Table 3: Evaluation metrics for fault detection and load optimization 

Category Metric Equation Meaning 

Fault Detection 
Confusion 

Matrix 

     # samples with true class   

predicted as   
Detailed error distribution 

Fault Detection Accuracy     
    

     

    
      

     

 Overall correct classification rate 

Fault Detection 
Precision 

(Class i) 
      

   

       

 Reliability of detected class   

Fault Detection 
Recall (Class   

) 
     

   

       

 
Ability to detect all class   

events 

Fault Detection 
F1-score 

(Class   ) 
    

          

          

 
Balance between precision and 

recall 

Fault Detection Macro-average    
 

 
    

      
Equal-weight performance 

across classes 
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Fault Detection 
Weighted-

average 
        

           
  

 
 Accounts for class imbalance 

Optimization Total Cost       
       Total grid energy cost 

Optimization Grid Energy  grid      
       Grid dependency (kWh) 

Optimization 
Renewable 

Utilization 
 ren, used      

               
Renewable energy actually 

consumed 

Optimization 
Curtailment 

Energy 
 curt      

                 Wasted renewable energy (kWh) 

Optimization 
Peak Grid 

Import 
 max            Worst-case grid stress 

Optimization 
Demand 

Definition 
                Total demand (base + flexible) 

 

 

Figure 1. Flow chart 

3. Results and Discussion 

The results presented below are critical 

studies of the results of the AI-supported IoT-

based smart grid framework for fault 

identification and load optimization under 

renewable energy integration. The results are 

organized to conduct a thorough assessment of 

the electrical fault classification performance 

and the energy management efficiency of the 

system. First, the statistical behavior of the 

acquired IoT measurements are investigated in 

order to reveal the physical behavior of 

important electrical and thermal parameters at 

both normal and faulty operating scenarios. 

The effectiveness of the AI-based fault 

detection model is further evaluated using 

class-wise performance metrics, confusion 

matrices, and feature-level analyses, which 

give an indication about the ability of the 

model differentiating between minor and 

dramatic power quality disturbances. 

Simultaneously, the results of the AI-driven 

load optimization strategy are described in 

order to illustrate the role of flexible demand 

scheduling and renewable energy usage in 

influencing grid operation, cost, and 

curtailment. analyze hourly power balance, cost 

profiles, and key performance indicators to 

determine the economic and operational 

benefits obtained from our proposed approach. 

In particular, draw reference to the physical 

interpretation of the results and connect visible 
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numerical trends to real-world smart grid 

behavior. Overall, this section confirms the 

efficacy of the designed framework in 

improving fault detection reliability, renewable 

penetration, and operational efficiency, 

pointing both to limitations and to 

opportunities for improvement as well as the 

possible future application of the proposed 

framework. 

Figure 2 presents the general class 

distribution of the simulated IoT dataset used 

for smart grid fault detection. It is evident that 

the Normal operating condition significantly 

dominates the dataset with about 4,800 samples 

representing around 80% of the data, which is 

directly related to the fact that most of the time, 

the power systems run under the normal 

condition. Fault cases do occur a little more 

rarely, which is why there are far fewer 

abnormal cases. The Voltage Sag, Voltage 

Swell, Frequency Deviation, Harmonics and 

Overcurrent faults each of which include 

approximately 220–260 samples, and thus must 

show a consciously even distribution of faults. 

In physical terms, this distribution corresponds 

to real power systems where disturbances such 

as sag/swell and harmonic distortion are 

intermittent states, not continual ones. The 

larger number of samples among fault classes 

means that the learning algorithm does not 

have a bias towards some fault mechanism. 

Nonetheless, the strong imbalance between 

normal and faulty conditions speaks to a 

practical operational difficulty for smart grid 

monitoring systems. This imbalance highlights 

critical requirements of strong AI models that 

can detect low frequency but essential faults 

with high reliability. The correlation heatmap 

that can be extracted from the measured IoT 

features for intelligent grid fault detection is 

shown in Figure 3, where V_pu, I_pu, f_Hz, 

THD%, P_kW, Q_kVAr, PF, and Temp_C are 

the IoT’s features. As expected, the diagonal 

components all contain a perfect relationship of 

one and confirms the robustness of the 

correlation matrix with 1.0. There is a 

moderately negative correlation (c.−0.4 to -0.5) 

between voltage and current that verifies a 

load-dependent model in which voltage 

decreases a bit with a higher current (in 

stressed conditions). Power factor has high 

negative relationship with THD% (-0.6) which 

means that harmonic distortion has strong 

negative impact to the quality power and hence 

decreasing the possibility to efficiently use the 

power. could observe a small and moderate 

positive correlation (approximatively 0.45) 

between current and temperature, which is 

practically related, which is directly 

proportional to higher Joule heating when 

higher current levels are obtained from Joule 

heating. These indicate that active power and 

reactive power have only weak positive 

correlations, indicating they exert only 

intermediate independent contributions in 

different loading and fault conditions. 

Frequency is nearly indifferent to other 

operating parameters, which indicates grid 

control structures that strictly coordinate 

frequency with only particular disturbances. 

Overall, the low-to-moderate off-diagonal 

correlations indicate to us that the selected 

features provide complementary information, 

which is beneficial for AI-based fault 

classification, and can strengthen modeling's 

independence from redundant input. Figure 4 

shows the confusion matrix of the proposed AI-

based fault detection model applied to IoT 

measurements inside the smart grid. The results 

confirm that Normal operating condition is a 

very accurate classification model, with 1,188 

examples correctly recognized and no 

misclassification as a fault, showing good 

discrimination between health and abnormal. 

The 50 samples of Voltage Sag fault detected 

are correct, but 4 samples are labeled as 

normal, indicating slight overlap over mild 

voltage drops. As a result, the Voltage Swell 

class gets 59 correct predictions, 7 samples 

which are misclassified as Normal under 

marginal overvoltages. For instance, 38 

samples are classified correctly in the 

frequency deviation class while 24 samples are 

misclassified as Normal operation; hence, 

detecting low-magnitude frequency 

disturbances is difficult. At this time, the 

Harmonics fault perfectly classifies with 67 

detections, which means that THD features 

definitely play a critical role for identifying 
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power quality degradation. Likewise, 

overcurrent fault had 63 correct classifications 

with zero misclassifying, confirming the 

obvious physical signature of high current and 

temperature rise. Thus, the confusion matrix 

shown that misclassification of most of the 

errors is occurring between fault states and 

Normal operation, which confirms that very 

strong inter-fault separability occurs. These 

results verify the efficacy of the chosen IoT 

features and corroborate the proposed AI 

solution for trustworthy smart grid fault 

monitoring. The row-normalized confusion 

matrix in Figure 5 lists each operational 

condition's true-positive recall value in our 

smart grid fault detection model. The class, 

Normal, has a perfect recall of 1.00, where all 

normal operating samples are correctly 

identified without mis-identifying faults. The 

Voltage Sag fault has a recall around 0.93, in 

which 7% of sag events were misclassified as 

normal, this physically corresponds to shallow 

voltage dips that are very similar to nominal 

conditions. Likewise, the Voltage Swell 

category achieves a recall of approximately 

0.89, and about 11% of swell situations are 

regarded as normal, which reflects marginal 

overvoltage events. The lowest recall of ~0.61 

occurs in the Frequency Deviation class and 

39% of samples fall into its normal error, 

which implies difficulty detecting small 

frequency excursions that do not exceed tight 

control limits on a grid. However, Harmonics 

and Overcurrent faults have both obtained 1.00 

perfect recall values, confirming the great 

physical signatures from high harmonic 

distortion and high current-induced heating. 

Notably, there is no noticeable confusion 

among different fault classifications, with off-

diagonal fault-to-fault entries being zero. This 

behavior establishes that, in the selected IoT 

features, very high inter-fault discrimination is 

achieved and that the fundamental 

classification challenge lies in distinguishing 

subtle from normal operation that the IoT 

features exhibit. For all operating conditions, 

the AI-based fault detection model is shown in 

Figure 6 with each class to show the precision, 

recall, and F1-score of the model. Normal 

class, achieving high precision around 0.97, 

recall approximately 1.00, and F1-score ~0.98, 

indicating the good performance of positive 

classification of healthy grid operation. The 

Voltage Sag fault shows good performance 

with about 0.93 recall and an F1-score similar 

to 0.96, which would show a good 

identification of the majority of sag events and 

few misclassification. Likewise, the Voltage 

Swell class has a recall of about 0.89 and an F1 

score of about 0.94, indicating an accurate 

awareness of the overvoltage status. The 

smallest recall in Frequency Deviation fault 

(≈0.61) causes the lower F1-score of 

approximately 0.75, showing that it is very 

difficult to see small frequency deviation from 

normal regulated operation. In contrast, 

Harmonics and Overcurrent faults also have 

perfectly or almost perfectly precision recall 

and (≈1.00) and F1-scores, illustrating that the 

good of their great physical signatures (high 

THD concentrations and high 

current/temperature acceleration) are easily 

detected by the model. Overall, can see from 

the figure that although severe power quality 

faults, are detected with good reliability, but 

slight anomalies like frequency deviations are 

found most difficult to detect, this will inform 

the focus of future improvements of feature 

selection and model sensitivity. Mean and SD 

of per-unit voltage (V_pu) for every electric 

condition of smart grid is shown in Fig. Under 

normal scenario the voltage of the grid voltage 

remains just close to 1.0 p.u., but with a small 

standard deviation as the voltage stability is 

being maintained and regulated in the grid. 

Under the Voltage Sag condition the mean 

voltage decreased to about 0.85 p.u.; thus, 

indicates that the load increases or short-circuit 

breaks lead to the undervoltage, whereas a 

wide spread is indicated that the sag severity is 

different. On the other hand, the Voltage Swell 

class shows the highest mean voltage of 

approximately 1.12 p.u., showing the 

overvoltage scenarios commonly observed with 

load rejection or capacitor switching. Although 

the Frequency Deviation class's value is near 

one point, the frequency deviation as per the 

prediction of voltage magnitude and magnitude 

of voltage deviation at p.u. is much higher for 

this class. Likewise, the Harmonics class 
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indicates a relatively nominal voltage, with the 

mean not surpassing the nominal level and 

reflecting that harmonic distortion does not 

affect the actual waveform but rather the 

quality of the waveform. With Overcurrent, the 

average voltage is around 0.92 p.u., which 

would correspond to losses in a line due to 

excessive current and thus the voltage drop 

physically. In summary, the visualized 

structure of the diagram illustrates a clear 

voltage-level separation between sag and swell 

faults, establishing voltage magnitude as an 

important discriminative parameter in AI-based 

smart grid fault detection. 

 

 

Figure 2. Overall class distribution of IoT-based smart grid operating conditions 

 

Figure 3. Feature correlation heatmap of IoT measurements for smart grid fault analysis 
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Figure 4. Confusion matrix of AI-based smart grid fault detection model (test dataset) 

 

Figure 5. Row-normalized confusion matrix of the smart grid fault classification model 
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Figure 6. Per-class precision, recall, and F1-score for smart grid fault classification 

 

Figure 7. Class-wise mean and standard deviation of voltage (V_pu) under different smart grid operating conditions 

In addition, Figure 8 shows the average and 

standard deviation of grid frequency (f_Hz) for 

different operating conditions in the smart grid. 

Normal frequency operates around 50 Hz; the 

standard deviation close to zero points out that 

primary and secondary frequency control 

mechanisms work really well. Also, Voltage 

Sag and Voltage Swell classes maintain mean 

frequencies near 50 Hz, showing that 

significant disturbances for voltage magnitude 

are not affecting system frequency. For the 

Frequency Deviation class, the mean frequency 

is close to nominal but a much larger standard 

deviation for a higher frequency deviation, 

which is almost 49.4–50.6 Hz. This broad 

spread is a physical illustration of the transient 

frequency excursions produced by generation–

load imbalance or abrupt disturbances. The 

Harmonics and Overcurrent classes show low 

deviation from their nominal frequency, which 

implies that these faults mainly affect the 

quality of a waveform and the magnitude of the 

current and not system frequency itself, for its 

minor changes. Similar mean values of 

multiple classes make it harder to separate 

frequency deviation faults from normal ones 

when dealing with mean values alone. It 

ultimately indicates that frequency variance not 

based on mean frequency is the more important 

measure for frequency-related faults, therefore 

forcing AI models to learn from dynamic and 

statistical features that go beyond pure 
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averages. Mean value of total harmonic 

distortion (THD%) for all smart grid operating 

conditions and standard deviation of the 

THD% are depicted in Figure 9. In Normal 

operation, THD is low (∼2%) with little 

variation which means that the power quality 

levels are acceptable. The THD has almost the 

same values for Voltage Sag, Voltage Swell, 

and Frequency Deviation classes and the 

average THD varies around 2–2.3%, indicating 

that the disturbances mainly do not affect 

voltage magnitude or frequency but rather the 

waveform purity. Unlike the Harmonics Fault, 

which shows a relatively high average THD of 

approximately 10–11%, and a high standard 

deviation, which physically exhibits extreme 

waveform distortion caused by nonlinear loads 

or power electronic converters. This clear 

separation gives harmonic faults a degree of 

discernability through comparison with all 

other modes. The THD of Overcurrent is 

intermediate (∼2.3%), suggesting that the 

overcurrent is not necessarily inducing 

substantial harmonic distortion independently. 

This high deviation between the harmonic and 

nonharmonic classes accounts for the 

outstanding classification performance on 

harmonic faults. In general, the figure 

demonstrates that THD% is a significant 

discriminative variable for identifying the 

power quality degradation of AI-based smart 

grid monitoring systems. The mean and 

standard deviation of temperature-condition 

related to smart grid monitoring operation are 

shown in Figure 10. Under normal operation, 

the average temperature stays about 35 °C and 

only slightly varies depending upon the 

application, implying a thermal behaviour 

stability of grid components. The mean 

temperatures of the Voltage Sag and Voltage 

Swell classes are relatively high 

(approximately 36 °C), a result of transient 

current changes in response to a voltage 

interruption. Frequency Deviation class also 

reached the comparable temperature, which 

indicates that the frequency excursions affect 

the thermal conductance only slightly. In the 

Harmonics class the mean temperature appears 

closer to nominal, indicating that harmonic 

distortion doesn’t heat things in a big manner; 

it actually affects the quality of the waveform. 

While Overcurrent faults show significantly 

higher mean temperature close to 49–50 °C, 

but this has larger standard deviation which 

signifies excessive Joule heating as a result of 

persistent high current flow. Hence, this very 

clear thermal separation clarifies the strong 

performance in classification of an overcurrent 

fault. In general, the figure demonstrates that 

temperature is an extremely informative metric 

for current-related faults and complements 

electrical metrics in AI-based smart grid 

monitoring systems. Using a jitter scatter plot, 

the distribution of per-unit voltage (V_pu) of 

each operating condition is presented in Figure 

11, highlighting both central tendency and 

dispersion of single samples. The Normal 

operating condition is a dense cluster around 

1.0 p.u., showing stable voltage regulation with 

limited dispersion. While the Voltage Sag class 

exhibits a clear descending tendency, 

exhibiting most of the samples over 0.80–0.90 

p.u., and directly corresponds to undervoltage 

events due to abrupt increases in workloads or 

short-circuit conditions. The Voltage Swell 

class has well-defined separations, where 

voltage values fall between 1.10 and 1.18 p.u., 

indicating that the high voltage conditions are 

caused by load rejection or capacitor switching. 

The Frequency Deviation category has voltages 

that are relatively close to nominal but has a 

somewhat higher dispersion indicating the 

voltage magnitude does not appear to be 

affected significantly by frequency effects. In 

the same manner, the Harmonics group tends to 

be clustered near 1.0 p.u., and it shows that the 

harmonic distortion seems to dominate the 

waveform quality and not the voltage level. For 

the Overcurrent, there exists a marked drop in 

the Overcurrent class, with an emphasis of 

decreasing voltages between 0.88 and 0.95 p.u. 

because under high current flow voltage drops 

correspond to increasing line losses. In general, 

the distinct visual separation of sag and swell 

groups is clear evidence of the powerful 

discriminant performance of voltage magnitude 

and the overlap between other classes is what 

makes it necessary to further study with 

multipath, AI-based multi-feature analysis. 

Plotting grid frequency (f_Hz) for different 
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operating and fault classes using jitter scatter 

plot (Fig. 12). The Normal operating state 

comprises a compact cluster close to 50 Hz 

which indicates good regulation of frequency 

and least fluctuations inside and outside of this 

condition. Voltage Sag and Voltage Swell 

show similar narrow frequency distributions 

near 50 Hz, and indicate that disturbances of 

voltage magnitude do not significantly 

influence system frequency. A completely 

different trend can be determined for the 

Frequency Deviation class which has a vertical 

spread around 48.5–51.5 Hz, it suggests a 

transient frequency shift resulting from sudden 

generation–load imbalance or control delay. 

This kind of dispersion without an apparent 

change in mean value is characteristic of 

frequency-related fault. Harmonics still hovers 

close to nominal frequency, affirming that the 

harmonic distortion impacts waveform shape 

and not frequency stability. The Overcurrent 

class also presents small deviations in 

frequency which is suggesting that too much 

current flow doesn't affect the frequency of the 

system. Taken together, the Figure explicitly 

shows that frequency variance is an important 

discriminative attribute for frequency deviation 

faults, whereas mean frequency alone does not 

offer substantial separation from any other fault 

type, making it logical to need AI models that 

target higher-order statistical components. The 

distribution of total harmonic distortion 

(THD%) for various operating and fault 

conditions is presented in Figure 13 as a jitter 

scatter plot. Normal has a dense cluster of THD 

between 1% and 3%, which is appropriate 

quality of power for steady-state operation. The 

THD distributions are similar for Voltage Sag, 

Voltage Swell and Frequency Deviation where 

THD remains mostly below 4%, and the 

disturbances do not actually introduce any 

significant effect on the waveform distortion. 

This behaviour was very different for the 

Harmonics fault, where THD values sharply 

exceed and become concentrated in the range 

of around 8%–13%, which is simply showing 

the physically sharp waveform distortion 

caused by nonlinear loads or power electronic 

devices. Such a clear separation accounts for 

the superior classification behavior observed 

for harmonic faults. The THD of the 

Overcurrent class is moderately high (~1–

3.5%) which illustrates that high magnitude of 

current doesn't necessarily provide a strong 

content of harmony. Due to the relatively 

limited overlap between harmonic and non-

harmonic classes, THD% is suggested as an 

extremely discriminative property. In general, 

the figure validates that THD distribution is a 

good representative of physical aspects of the 

power quality loss and provides a good input 

for AI-based smart grid fault detection systems. 

 

 

Figure 8. Class-wise mean and standard deviation of grid frequency (f_Hz) under different operating conditions 
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Figure 9. Class-wise mean and standard deviation of total harmonic distortion (THD%) for smart grid operating 

conditions 

 

Figure 10. Class-wise mean and standard deviation of temperature (Temp_C) for smart grid operating conditions 

 

Figure 11. Distribution of voltage (V_pu) by fault class using jitter scatter representation 
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Figure 12. Distribution of grid frequency (f_Hz) by fault class using jitter scatter representation 

 

Figure 13. Distribution of total harmonic distortion (THD%) by fault class using jitter scatter representation 

It generates a jitter scatter plot in Figure 14 

in order to portray the temperature (Temp_C) 

distribution for different operating and fault 

conditions for the smart grid. For Normal 

operating condition, temperatures are mostly 

clustered from approximately 25 °C to 45 °C 

and centred around 35 °C, indicating a stable 

thermal state in the grid components in nominal 

loading. The Voltage Sag and Voltage Swell 

classes have a wider temperature distribution to 

45–48 °C due to transient current shifts due to 

voltage perturbations. The Frequency 

Deviation class shows a broader spread, with 

temperatures anywhere from 25 °C to above 50 

°C, indicating intermittent thermal stress owing 

to dynamic load–generation imbalance. The 

Harmonics fault is characterized by relatively 

higher temperature dispersion with respect to 

the reference conditions and likely further 

losses from distorted waveforms and increased 

RMS current. For the Overcurrent class, the 

temperature values are much more extreme, 

falling between 40 °C and 65 °C, physically 

representing excessive Joule heating with a 

high current in a long run. This robust thermal 

separation enables to achieve very high 

detection performance for overcurrent faults. In 

general, temperature distribution is very 

important and complementary for any AI-

driven smart grid monitoring system to identify 

current-related faults and thermal stress test. 

One illustration of such a real-time IoT data 
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stream captured from smart grid (in Figure 15) 

depicting the changes in voltage and frequency 

(V_pu and f_Hz) while also considering that of 

total harmonic distortion (THD%) over a 

sequence of test instances (Fig. 15) is 

presented. The voltage signal is still very 

clustered around ∼1.0 p.u. reflecting stable 

voltage regulation with slightly fluctuating 

loads during a normal operation. The frequency 

trace is centered around 50 Hz with extremely 

minor deviations, showing the effective grid-

frequency control in the operation standard 

conditions. In contrast, the THD signal has 

sharp spikes that occur once in a while up to a 

power electronic switching or a nonlinear load, 

both of which create transient harmonic 

disturbances that are physical evidence of the 

behavior of the system. All these short-term 

THD peaks are present without noticeable 

change in voltage or frequency, indicating the 

disjunction between the harmonic distortion 

and basic electrical quantities. By visualizing 

multiple parameters at once, it is demonstrated 

how fault signatures affect the results of a 

system over time. Multi-sensor IoT monitoring 

is crucial to capture rapid transient phenomena 

that static analysis probably will not pick up. 

At large, temporal patterns revealed indicate 

the importance of AI-based streaming analysis 

that can catch abrupt power quality 

disturbances in smart grid real-time 

applications. Fig. 16 shows the hourly changes 

of base load, flexible-adjusted load, renewable 

generation and grid power importing during 24 

hours of operation. The base load exhibits a 

predictable daily pattern of demand, which 

tends to rise during the day and decrease after 

dark. Given the flexible loads, a conscious shift 

of load in the baseline + flex curve is observed 

that is especially significant during off-peak or 

high renewable hours, clearly showing how 

intelligent load management has resulted in 

optimization. There is a strong daytime peak in 

renewable generation reaching around 35 to 40 

kW at midday, consistent with maximal solar 

availability and wind contribution. With higher 

renewable output the import from the grid is 

reduced dramatically from 30 to 40 kW at the 

beginning of the hour to virtually zero after 18 

hours and 22 hours, which will support the use 

of local and renewable resources. At these 

times renewables generation capacity is enough 

to cover most of the demands, reducing 

reliance on the grid. Power generation, when 

output is low in the early morning and late 

evening, is an increase in import according to 

the grid usage deficit. The figure illustrates 

quite nicely how orchestrated renewable 

integration along with load flexibility can 

smooth demand, reduce grid dependency and 

ensure system sustainability. At a glance, 

findings provide evidence to the efficacy of AI-

based optimization in enabling the efficient and 

balanced smart grid optimization. The hourly 

energy cost ($) per unit of grid electricity (over 

a 24 hour period) under the new AI-assisted 

load optimization strategy is presented in 

Figure 17. At early morning hours (1–5), there 

is an average energy price between 2.7 and 3.5 

USD attributed by this, demonstrating a 

medium dependency to the grid and low-cost 

tariffs. The peak of the cost of energy is around 

4.2 USD when hours 6 to 10 have the highest 

demand corresponding to the increasing load in 

conjunction to rising tariffs periods and very 

low renewable contributions. Hour after hour, 

as renewable generation starts increasing 

during midday, the hourly cost of the 

renewable generation gradually decreases to 

approximately 2.5 USD (hour 14). The largest 

savings are apparent during the late afternoon 

and evening (18-21) periods in which the cost 

decays steeply nearing zero, suggesting near-

complete dependence on renewable energy and 

negligible grid penetration. During this time, 

flexible load scheduling is very successful at 

matching demand to renewable availability. 

During the late-night hours, a slight inflation of 

cost occurs again as renewable generation 

decreases and grid import is reinstated. 

However, the figure alone shows that, AI-

enabled load optimization and renewable 

integration significantly decrease operational 

energy costs, especially at peak renewable 

generation times, which in turns enhances 

economic efficiency and grid sustainability. 

Figure 18 shows the ON/OFF scheduling 

heatmap of flex loading (HVAC, Pump and EV 

charging) over a 24-hr horizon based on AI 

based load optimisation. A value of 1 (yellow) 
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is an active load and 0 (blue) shows an inactive 

load. The HVAC system works mostly in the 

morning (1-7) and extends again in the evening 

(18 and 22–24) at temperature levels 

acceptable for thermal comfort and to reduce 

the cost of energy. Water pump intermittently 

operate, is mostly in hourly interval (hour 7, 

hours 18–20, and hour 24), as pump duty is 

diverted in those high demand hours. It is very 

obvious that EV charging is mostly between 

13–17 hours midday and at briefly at hour 21 – 

when the most renewable is generated and the 

least grid load must be injected. This 

orchestrated scheduling helps reduce the joint 

operation of power demands during the most 

times of Grid peak stress. So Overall, the 

heatmap shows that the AI controller is 

successful to keep flexible loads at bay, match 

consumption with renewable generation and 

reduce the dependence on grid power. This 

approach increases efficiency of the network 

and reduces operational expenses, it also allows 

for the integration of stable renewable power in 

the smart grid. Hourly renewable electricity 

usage and levels of curtailment occurring over 

a 24 hour period are shown in Figure 19 using 

the AI-integrated smart grid. The use of 

renewable energy grows steadily during the 

early morning hours until hour 11, when the 

utilization of renewable energy increases from 

nearly 13 kW at hour 1 to over 30 kW at hour 

11, because of the increasing generation of 

solar energy. The peak load usage is realized 

during afternoon and early evening hours (18 - 

22 hours) when consumption of renewable 

energy goes above 40 kW of the energy 

generated, suggesting the load-demand is well 

matched at this point in the load, i.e. energy 

with renewable power provision. The amount 

of curtailment is next to negligible all day long, 

a clear indication that the AI controller can 

efficiently absorb the energy that renewable 

power by scheduling load with limited limits to 

load with the AI controller’s ability to absorb 

renewable. Small curtailment events are seen in 

hours 18–22, with peak curtailment values 

falling well under 2 kW, perhaps a reflection of 

the temporary surplus demand and flexibility 

limits beyond the instantaneous demand. Taken 

as a whole, this demonstrates that the proposed 

way gives good renewable generation 

utilization at low curtailment, increasing the 

system performance and facilitating sustainable 

integration of renewable energy supplies within 

smart grid. Figure 20 displays the main energy 

Key Performance Indicators (KPIs) to represent 

the overall smart grid operation during the 

analyzed period. The overall amount of 

renewable energy used is approximately 700 

kWh, which is higher than the grid-imported 

energy of about 490 kWh, showing that it relies 

heavily on renewable energy. This indicates the 

AI-based energy management strategy is 

successful at ensuring clean energy usage 

ahead of grid provision. It is to the fact that the 

curtailed energy is extremely low (≈3–4 kWh, 

less than 1% of total renewable generation), 

which indicates the efficient load shift and 

flexibility resource usage. This low amount of 

curtailment is a strong point for the system; a 

demonstration of capacity to trade-off demand 

and renewable provision. Taken together, these 

KPIs show that the proposed control 

framework is capable of achieving high 

renewable penetration, high grid independence 

and low energy waste and contributes towards 

delivering economic savings as well as 

sustainability goals of smart grid operations. 
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Figure 14. Distribution of temperature (Temp_C) by fault class using jitter scatter representation 

 

Figure 15. Example IoT measurement stream showing voltage, frequency, and harmonic distortion in test samples 

 

Figure 16. Hourly power balance between load demand, renewable generation, and grid import 
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Figure 17. Hourly energy cost profile under AI-optimized smart grid operation 

 

Figure 18. AI-optimized ON/OFF scheduling of flexible loads in the smart grid 

 

Figure 19. Hourly renewable energy utilization and curtailment under AI-based smart grid control 
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Figure 20. Key energy performance indicators (KPIs) of the AI-based smart grid system 

Table 4 summarizes the statistical statistics 

for all essential electrical and environmental 

parameters utilized in the AI-enabled smart 

grid analysis. According to V_pu, the voltage 

magnitude (V_pu) shows a mean value of 

0.9959, which is very close to the nominal 

value and values below 0.7514 and above 

1.2058, suggesting that the voltage sag and 

swell events exist. The frequency (f_Hz) of the 

grid is tightly regulated at a value around 

50.002 Hz, but deviations of 48.354 Hz and 

51.722 Hz give evidence of frequency 

disturbances. During load and overcurrent 

conditions, the current (I_pu) shows a larger 

variability from 0.4654 to 1.9165. The average 

active power (P_kW) of 40.39 kW with the 

peaks being around 79.5 kW indicates high 

demands. The reactive power numbers 

(Q_kVAr) range from negative to positive 

values, which represents shift in active 

operational modes — capacitive or inductive. 

The power factor (PF) is still high at 0.91, the 

minimum is ∼0.61 indicating efficiency losses 

in disturbances. Harmonic distortion (THD%) 

is generally an average of 2.35% and can be of 

up to 13.84%, reflecting that the harmonic 

events were very intense. The temperature 

(Temp_C) continues to fluctuate from 15.7°C 

to 68.2°C indicating that electrical stress is 

related to thermal load. In general, these 

statistics confirm on the richness of the dataset 

and its use in intelligent fault and load 

optimization research. Table 5 shows the 

distribution of normal and abnormal operating 

conditions applied during the training and in 

the performance testing of the AI based fault 

detection model. The class Normal 

predominates in this table, consisting of 3612 

training and 1188 testing samples, which is 

characteristic of regular operation of the grid, 

which contributes the strong baseline learning. 

Fault classes such as voltage sag (233 samples) 

and voltage swell (235 samples) are the least 

frequent and often show randomness because 

they are rare in real-life power systems. This 

group of samples provides equal representation 

for disturbance classification as frequency 

deviation, harmonics, and overcurrent faults 

have similar sample sizes: 235–250 total 

samples. This deliberate class imbalance 

simulates real-world smart grids, where normal 

conditions are much more common than faults. 

The custom KNN classifier (k = 7) had an 

overall accuracy of 97.67% using this dataset 

due to high discrimination ability, with slightly 

biased distributions. Indeed, the extreme 

accuracy verifies that the chosen features 

successfully capture the physical signatures of 

each fault type. In addition, implementation 

without toolbox emphasizes the computational 

efficiency and deployability of this method for 

real-time IoT-based smart grid monitoring. As 

shown in Table 6, the detailed classification 

performance of the proposed AI-based fault 

detection system is presented in Table 6 for 

each power quality condition. In the normal 

operating state perfectly remembered: it has 

1.00 and F1-score equals 0.985, therefore there 
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is no misclassification of healthy grid 

conditions. Voltage sag and swell faults exhibit 

an accuracy of 1.00, which means that all the 

detected events are in fact true faults, however, 

recall of 0.926 and 0.894 respectively represent 

few missed events due to overlapping voltage 

characteristics. And the recall is the lowest for 

the frequency deviation class (0.613), that is 

because the challenge is in distinguishing 

subtle fluctuations in frequency from its normal 

deviation. Harmonics and overcurrent faults 

perform similarly perfectly (precision, recall, 

F1 = 1.00) also confirming their very strong 

electrical signatures and distinctness. The 

macro F1-score is 0.942, which shows that this 

system works well for all types of faults, while 

the weighted F1-score is 0.975 and overall 

accuracy is 97.67%, which suggests strong real 

world reliability. The results affirm the 

successfulness of the chosen features and 

customized KNN model for IoT smart grid 

fault monitoring. Scheduling the hourly 

operation schedule in the smart grid integrates 

renewable energy sources into flexible demand 

management is shown in Table 8. For early 

hours (1–6), the output is much more 

dependent on grid import (≈35–42 kW) in the 

absence of solar generation, which results in 

reasonable hourly costs of $3.1–3.8 for the low 

tariff of $0.09/kWh. From hours 8–17 an 

increase in solar penetration (up to 35 kW) 

reduces net demand even with charging by EV, 

resulting in a net import of only 12.8–19.1 kW. 

At hours 18, 21 and 22, renewable generation 

is more than total supply, leading to negative 

net demand at curtailment values of 1.68 kW 

per hour, even at peak prices of $0.22/kWh 

with zero grid import. Flexible loads are 

positioned to peak at high renewables hours, to 

reduce operation costs. Hour 20 has the 

smallest hourly cost ($0.04), demonstrating the 

efficiency of coordinated load scheduling 

combined with renewable energy utilization. 

As a whole, the table verifies that intelligent 

demand response with renewables significantly 

decreases both the requirement for power and 

cost and balances systems. 

 

Table 4: Statistical summary of electrical and environmental features in the smart grid dataset 

Feature Mean Std Min Max Physical Meaning 

Vpu 0.9959 0.0472 0.7514 1.2058 Per-unit voltage magnitude 

fHz 50.002 0.1353 48.354 51.722 Grid frequency 

Ipu 0.7995 0.1931 0.4654 1.9165 Per-unit current 

PkW 40.391 8.5099 7.0123 79.496 Active power 

QkVAr 12.117 5.2861 -7.8446 33.441 Reactive power 

PF 0.9104 0.0471 0.6095 1.059 Power factor 

THD_% 2.3522 1.7627 -1.0454 13.838 Harmonic distortion 

TempC 35.744 5.3707 15.71 68.191 Equipment temperature 
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Table 5: Class distribution of power quality conditions in training and testing datasets 

Class ID Class Name Training Samples Testing Samples Total Samples 

1 Normal 3612 1188 4800 

2 Sag 179 54 233 

3 Swell 169 66 235 

4 Frequency Deviation 185 62 247 

5 Harmonics 168 67 235 

6 Overcurrent 187 63 250 

 

Table 6: Per-class and overall performance metrics of the AI-based fault detection model 

Class ID Class Name Support Precision Recall F1-Score 

1 Normal 1188 0.971 1.000 0.985 

2 Sag 54 1.000 0.926 0.962 

3 Swell 66 1.000 0.894 0.944 

4 Frequency Deviation 62 1.000 0.613 0.760 

5 Harmonics 67 1.000 1.000 1.000 

6 Overcurrent 63 1.000 1.000 1.000 

 

Table 7: Optimized hourly energy scheduling and cost analysis in a renewable-integrated smart grid 

Hour 

Base 

Load 

(kW) 

Renewable 

(kW) 

Solar 

(kW) 

Wind 

(kW) 

Flexible 

Loads 

ON 

(HVAC 

/ Pump 

/ EV) 

Flex 

Load 

(kW) 

Net 

Demand 

(kW) 

Grid 

Import 

(kW) 

Price 

($/kWh) 

Hourly 

Cost 

($) 

Curtailment 

(kW) 

1 41.74 12.75 0.00 12.75 1 / 0 / 0 6 34.99 34.99 0.09 3.15 0 

6 49.44 13.46 0.00 13.46 1 / 0 / 0 6 41.98 41.98 0.09 3.78 0 

8 50.42 22.74 9.06 13.69 0 / 0 / 0 0 27.67 27.67 0.13 3.60 0 

12 55.99 31.05 24.75 6.30 0 / 0 / 0 0 24.94 24.94 0.13 3.24 0 

15 45.21 37.81 32.34 5.47 0 / 0 / 1 7 14.41 14.41 0.13 1.87 0 

18 34.52 40.91 35.00 5.91 1 / 0 / 0 6 –0.39 0.00 0.22 0.00 0.39 

21 34.64 43.14 32.34 10.80 0 / 0 / 1 7 –1.50 0.00 0.22 0.00 1.50 

24 39.76 36.74 24.75 11.99 1 / 1 / 0 10 13.02 13.02 0.09 1.17 0 
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Most of the previous research has explored 

smart grid technologies such as artificial 

intelligence and IoT especially with regards to 

fault detection, energy management or the 

renewable integration, often treated as distinct 

problems. For instance, Adefarati et al. (2025) 

presented an extensive survey of AI- and IoT 

integrated solutions for renewable-dominant 

power systems to a high degree, focusing on 

forecasting and monitoring, but with no explicit 

optimization framework. Thus, Alijoyo (2024) 

and Areola et al. (2025) investigated AI based 

energy management and renewable optimisation 

models, but focused only on smart buildings or 

solar with storage and not on grid-wide fault-

aware operation. For example, Arévalo and 

Jurado (2024) have worked on AI-supported 

planning and dispatch of distributed energy 

systems while Rana (2025) and Nuruzzaman et 

al. (2025) focused on fault detection and 

predictive maintenance without linking it to 

operational load scheduling. In comparison to 

those earlier works, this study presents a single 

AI-facilitated IoT-based smart grid system that 

implements multi-class fault detection and cost-

effective load optimization at a high renewables 

level. Different from the previous work that 

attempts to assess fault detection and energy 

management in isolation, directly connect the 

results of real-time classification of fault to 

operational decisions related to load control and 

renewable production. In addition, the method 

proposed combines the physical electrical 

characteristics (V, I, f, THD, P, Q, PF, and 

temperature) and a computationally efficient, 

toolbox-free AI model with a mixed-integer 

optimization formulation that is suitable for 

practical deployment and immediate adaptation. 

This integrated strategy is a major improvement 

on past research and fills important voids 

associated with operational resilience, renewable 

utilization efficiency, and smart grid autonomy. 

4. Conclusions  

Introduced an integrated fault detection 

system and load optimisation process to use an 

AI–informed IoT-based smart grid under the 

renewable energy integration. The results 

obtained are unambiguous in proving the 

efficiency and practical effect of the approach. 

The fault detection model, based on AI, had a 

total classification accuracy of 97.67%, perfect 

detection performance across all major fault 

types (harmonics and overcurrent F1-score = 

1.00), with excellent performance toward 

voltage sag, swell, and frequency deviation. 

Hence, these findings validate the robustness of 

the proposed model to correctly characterize 

different types of grid disturbances with 

immediate IoT measurements. From an energy 

management viewpoint, the optimized energy 

optimization framework substantially improved 

renewable energy usage, and provided around 

700 kWh renewable compared to 490 kWh grid 

imported energy, reducing the dependence on 

traditional energy. At < 1% of total generation 

renewable energy curtailment, indicates very 

effective coordination between flexible loads 

and variable renewable supply. Moreover, 

intelligent scheduling of controllable loads 

proved effective at improving peak grid import 

and reducing overall electricity cost during peak 

tariff times. In sum, findings indicate that this 

framework can effectively integrate accurate 

fault detection, cost-effective load scheduling, 

and renewable integration in a seamless and 

computationally efficient framework. The 

proposal not only offers a reasonable plan to 

strengthen the reliability, sustainability, and 

operation efficiency of smart grids, but also 

establishes a baseline for the development of 

future real-time intelligent energy management 

projects. 

Further study can add to the present study by 

verifying the proposed mechanism in real-world 

smart grid or SCADA datasets to test its 

robustness in operational terms. might then 

investigate new AI approaches (e.g. deep 

learning or hybrid ensemble models in case of 

advanced data analytics) that offer better 

detection of finer-scale faults, especially 

frequency deviation events. Furthermore, 

including energy storage and electric vehicle-to-

grid (V2G) technologies into the optimization 

model can improve system flexibility and 

subsequently reduce further renewable 

curtailment. The incorporation of cybersecurity 

and anomaly detection capabilities also becomes 

a must-have to counter cyber–physical threats in 
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IoT-enabled smart grids. Lastly, extending the 

optimization time scales into multi-day or 

seasonal schedules would add another layer of 

understanding regarding long-term operational 

planning and system resilience. 
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