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Rising penetration of renewable energy sources presents significant challenges to smart grid
operations, especially in fault detection, power quality, and cost-effective energy management.
In this research, suggest a smart grid framework with Al-supported 10T that combines real-
time fault detection solution and intelligent load monitoring for the smart grid for grid
reliability and the renewable energy supply optimization. Electrical and environmental
information such as voltage, current, frequency, total harmonic distortion, power quantities,
power factor, and temperature are gathered by 10T sensors and processed through an efficient,
toolbox-free Al-powered, computationally efficient artificial intelligence model. A custom
multi-class K-Nearest Neighbors classifier is applied in fault detection with a high sensitivity
classification accuracy score of 97.67%, perfect detection accuracy for harmonic and
overcurrent failures and strong classification results for voltage sag, swell and frequency
deviation events. Concurrently, a mixed-integer linear programming—based optimization
approach is proposed to plan flexible load utilization and reduce the energy requirement
associated with grid use in an environment with time-varying tariffs and renewable resources.
The optimization results indicate that about 700 kWh of renewable energy is used effectively
as opposed to 490 kWh of grid-imported energy, yet renewable energy curtailment is below
1%, indicating that demand—supply is good coordination. At the same time, a fault-aware
optimization framework drastically reduces the total operational cost and renewable energy
waste and grid dependency, while guaranteeing high reliability in fault detection. The
solutions demonstrate that the method proposed is suitable for real-time rollout in intelligent,
reliable, and sustainable smart grid systems.

1. Introduction

The explosive development of renewables,
including solar and wind power, has greatly
expanded the shape and process of the current
electrical power networks. Despite promoting
sustainability and emission reduction, high
integration of renewable power sources
generates challenges connected with power
quality, system reliability, and operational
efficiency. The variability and irregularity in
renewable generation, combined with the
increasing complexity of the distributed load,
result in the inability of traditional monitoring
and control methods for the smart grid of
today. In this regard, Internet of Things (loT)
and its technologies enable continuous real-
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of  electrical and
environmental  parameters across power
networks. 10T sensors measure voltage,
current, frequency, harmonic distortion, power
flow, and temperature in high-resolution,
forming the basis of data-driven smart grid
functioning. But large quantities of data don't
solve grid performance issues on their own
without intelligent analysis and decision-
making mechanisms. Aurtificial intelligence
(Al) has proved out to be a strong method for
studying complex and nonlinear behaviour of
smart grid data, especially in fault detection
and power quality determination. Artificial
intelligence based models showed higher
accuracy in abnormal operating conditions
detection than traditional threshold detection

time  monitoring
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methods. However, most of the published
literature have primarily been based on fault
detection and have not considered how these
can be incorporated into energy management
and load scheduling, which Ilimits their
applicability in live grid operation where fault
and operation decisions are closely linked to
each other.

(Adefarati et al., 2025) [1] detailed a
thorough review discussing how 10T and Al
contribute to improving the monitoring, control
and reliability of renewable-dominant power
systems. Their research highlighted Al-driven
forecasting and real-time optimization as
driving factors of high renewable penetration.
(Alijoyo, 2024) [2] explored deep learning-
based energy management frameworks for
Industry 4.0 smart buildings. Results showed
major gains in energy efficiency based on
predictive control and adaptive demand-side
management. (Areola et al., 2025) [3] critically
reviewed Al techniques for optimizing solar
power systems integrated with energy storage.
The authors highlighted trends, pointing to
future directions but also presented problems in
data quality, scalability, and system
interoperability. (Arévalo & Jurado, 2024) [4]
used Al to understand the design and operation
of distributed energy systems in smart grids.
Their findings revealed how Al enhances
dispatch decisions, system flexibility and
operational resilience. (Awad & Bayoumi,
2025) [5] described an integrated Al &
cybersecurity/regulatory perspective of next-
generation smart inverters by incorporating Al,
cybersecurity and regulatory aspects. The
research emphasized the significance of
intelligent inverters as providing grid stability
during the energy transition. (Bajahzar, 2024)
[6] investigated the Al-based Internet of
Everything services for the smart home.
According to the study, the intelligent
automation has the positive impacts of
increasing user comfort, saving energy and
responding to the system. (Bajwa et al., 2025)
[7] performed a systematic literature review on
Al-powered smart building management
systems. Their findings validated significant
reductions in energy consumption and
emissions via  Al-centered  optimization

strategies. (Benson & Eronu, 2025) [8]
evaluated the combination of thermal-based
power systems with renewable electricity. The
research  highlighted the importance of
optimization and storage mechanisms to sustain
the reliability of the grid in response to
fluctuating amount of renewable energy. (Das,
2025) [9] investigated the relationship between
loT and Al for sustainable and energy efficient
smart buildings. The paper also found some
technical obstacles and recommended strategic
directions for large-scale  deployments.
(Goudarzi et al., 2022) [10] surveyed smart
grid technologies supporting 10T, which
includes  architecture,  application, and
obstacles. Thus they established a basic
overview of communication, data analytics and
security issues. (Ifeanyi Kingsley et al., 2025)
[11] explored the latest developments in Al
driven energy management systems for
renewable integrated smart grids. A study of
the effectiveness of Al in demand forecasting
and optimization of energy dispatch was
identified in the study. (Ikegwu et al., 2025)
[12] explored the potential of Al and machine
learning in monitoring and optimizing energy
consumption in smart homes. Their findings
indicated greater accuracy in predicting
consumption and fault detection. (Joshua et al.,
2024) [13] introduced a hybrid machine
learning model for solar energy potential
analysis and fault detection in AloT-based
solar—hydrogen power plant. The framework
improved system reliability and predictive
capability. (Karim et al., 2025) [14] presented a
preprint study focusing specifically on newly
deployed Al-driven methodology for energy
systems analysis. The report highlighted future
research avenues of intelligent energy
optimization. (Mahmud & Waheduzzaman,
2025) [15] studied the contribution of artificial
intelligence in smart grid technologies in smart
system design. The research drew attention to
AT’s role in predicting load, diagnosis of faults
and also of grid automation. (Mawat &
Hamdan, 2023) [16] described hydrodynamic
and water quality modeling methods, which
were applied for surface water environment.
Their research contributed knowledge useful in
the environmental monitoring and sustainable
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resources management. (Nuruzzaman et al.,
2025) [17] performed a systematic review on
predictive maintenance for power transformers
based on Al and loT. Through diagnostics
driven by data, the findings suggested reduced
downtime and improved life for assets.
(Nuruzzaman & Rana, 2025) [18] focused on
loT-enabled condition monitoring for power
distribution systems. This study focuses on
SCADA integration, real-time analytics and
overcoming cyber-physical security issues.
(Nuthakki et al., 2022) [19] studied the benefits
to the company with Al-enabled smart meters
in enhancing customer satisfaction. They found
that they improved billing accuracy, demand
awareness, and energy management. (Ojadi et
al.,, 2024) [20] for energy efficiency and
reducing carbon footprint, they examine Al-
enabled smart grid systems for urban networks.
The findings validated AI’s role in sustainable
urban energy planning. (Rana, 2025) [21]
examined Al-driven fault detection and
predictive maintenance of power systems.
Digital twins and self-healing grid concepts
were integrated into the study. (Rojek et al.,
2025) [22] has shown that a case study about
use of 10T and Al-based applications of IoT to
save energy in buildings has been delivered
using the case example of how to integrate 10T
and Al applications for building energy
management. The findings showed good real-
time optimization on time, energy consumption
optimization and reduction in consumption of
energy use were well presented with an
effective effect of the results. (Sankarananth et
al., 2023) [23] proposed Al-enabling
metaheuristic ~ optimization  strategies for
predictive management of renewable energy
production. Their method led to enhanced
predictions and an increase of grid efficiency.
(Sarin et al., 2025) [24] performed a
bibliometric-supported systematic literature
search for Al-based renewable microgrid
optimization. This study noted some research
gaps and discussed future directions regarding
intelligent microgrids. (Stecuta et al., 2023)
[25] studied Al powered urban energy
solutions from a local to societal scale. The
report highlighted the role of Al in realizing
smart, low-carbon cities. (Udoka Eze, 2025)

[26] proposed Al-based MPPT model on
hybrid solar-wind systems for off-grid rural
electrification. The results indicated increased
efficiency of energy harvesting and reliability
of the system. (Ukoba et al., 2024) [27]
overviewed Al use cases in refining renewable
energy systems. Future outlook for intelligent
control, forecasting, and system integration was
provided by the study.

Despite the increasing literature on Al and
loT-enabled smart grid applications within a
wide range of smart grid fields, a number of
important gaps persist in current research. Most
previous researches have treated fault
detection, renewables management and load
optimization as independent issues and not
taking into account the high coexistence of the
issues in everyday smart grid. Al-driven fault
detection strategies in particular tend to be
developed as independent monitoring devices
and are not incorporated into real-time energy
management or load scheduling decision-
making. Likewise, load optimization studies
commonly assume the presence of ideal grid
conditions, ignoring the influence of the power
quality irregularities and faults on operational
tactics. The recent contribution of this paper is
the proposed unified Al-based loT-based smart
grid system that combines multi-class fault
detection and load optimization under
renewable energy integration. Contrasting to
previous methods, this research connects the
real-time fault classification prediction results
and operational load scheduling to realize
dynamic, energy-aware fault-analysis. More
importantly, this method combines electrical,
power quality and thermal features and
provides a single Al model’s complete data that
allows a holistic physical representation of the
grid  behaviour.  Furthermore, an Al
implementation is computationally efficient
and toolbox-free with a mixed-integer
optimization ~ formulation  that increases
practical deployability in real-time and
resource-constrained  environments.  The
proposed framework will push the smart grid
through to operate more reliably, sustainably,
and even high-smart autonomous systems by
addressing these gaps.
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2. Methodology
2.1 System overview

Thus, the proposed system is an Al-enabled
loT-based smart grid framework, which will
bring reliable fault detection and cost-efficient
load optimization during a high renewable
penetration condition. This is a unified
architecture consisting of distributed loT
sensors, an artificial intelligence decision layer,
and an energy management module. It collects
electrical and environmental measures in near
real-time (voltage, current, frequency, total
harmonic  distortion,  power  quantities,
temperature) continuously from core grid nodes
and sends it to a central processing unit. At the
analytical level, the obtained data is
preprocessed and presented to an Al-based
fault detection model which classifies the grid
operating state as normal or specific fault
conditions.  Simultaneously, a load and
renewable energy modeling module predicts
available solar and wind generation, in addition
to flexible load capacities. Using these inputs,
an optimization module will schedule
controllable loads in a way which allows for
the minimization of energy cost, while
operating to satisfy fixed operational
constraints and maintaining the strength of the
grid stability. Fault detection/load optimization
interaction provides the opportunity for
adaptive and robust operation of the grid from
an adaptive dynamic system to be able to
dynamically respond to disturbances and
renewable variability. Indeed, the presented
framework  offers a  scalable  and
computationally  effective  approach to
intelligent monitoring and energy management
in the context of contemporary smart grids.

2.2 Data and fault modelling

Here, apply a synthetic loT dataset to
model the smart grid operating data that
represents normal and failing electrical &
environmental behavior. A total of 6000
samples are generated, of which 80% (4800
samples) are for normal operating conditions
and 20% (1200 samples) are for fault scenarios.

The eight measured features of each sample
are:

- Voltage magnitude (Vpy),

- Current magnitude (lpy),

- Grid frequency (fu,),

- Total harmonic distortion (THD%),
- Active power (P W),

- Reactive power (QxVATr),

- Power factor (PF),

- Temperature (Tempc).

In normal operation, normal values are near
nominal values like a voltage mean of about
0.996 p.u., frequency around 50.0 Hz, THD
around 2%, and temperature of 35.7 °C
suggesting steady state grid performance. To
implement physically meaningful deviations
from the nominal values, fault conditions are
modeled. Voltage sag faults are described by a
voltage of no less than 0.75 p.u., and voltage
swell faults represent a voltage of up to 1.21
p.u.. Frequency deviation issues bring
oscillations of 48.35 Hz—51.72 Hz, which
indicates the generation—load imbalance.
Harmonic faults are modelled by the THD
magnitude up to 13.8% which reflect high
potential for waveform distortion due to non-
linear loads. Current magnitudes of overcurrent
faults are generally equal to 1.92 p.u. and
associated temperature rises, peaking at 68.2
°C, indicating significant thermal burden. Each
type of fault is assigned another class label,
allowing the identification of multiple classes
of faults. Therefore, this data-driven fault
modeling approach ensures the dataset
generated  reflects  real-world  physical
signatures of power quality perturbations which
can serve as a solid basis for both training and
evaluating the Al-based fault detection model.

2.3 Al-based fault detection

As a second implementation, the fault
detection module uses a custom K-Nearest
Neighbors (KNN) classifier for detecting the
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operating condition of the smart grid based on
the loT measurements. KNN was chosen due to
its simplicity, transparency, and robustness
along with being suitable for deployment in
resource-constrained 10T systems. The model
is a multi-class classification model, in which
every measurement vector received will be
assigned to one of six classes — Normal,
Voltage Sag, Voltage Swell, Frequency
Deviation, Harmonics, or Overcurrent. All
features are normalized by using the mean and
standard deviation of the training data set
before classification in order to get a balanced
contribution of each parameter and to avoid the
dominance of scale before classification. For
one test sample, Euclidean distance between a

normalized test vector and all training samples
will be determined. The class label is then
established based upon majority voting across
the k=7 nearest neighbors decided to balance
sensitivity and noise robustness. A distance-
based decision mechanism to understand such
information results in the model being able to
pick up subtle differences in voltage,
frequency, harmonics, and temperature across
fault types. In real time the classifier gives a
discrete fault label, allowing us to quickly
identify abnormal conditions. Its effectiveness
is demonstrated through confusion matrices
and class-wise performance metrics presented
in the Results section.

Table 1: Mathematical formulation and parameters of the ai-based fault detection model

Item Description

Mathematical Expression / Value

Feature vector loT measurement vector

Number of features Electrical & thermal parameters

Number of classes Grid operating conditions

Normalization Z-score-based scaling

Distance metric Similarity measure

Distance formula

Classifier type Al model

Number of neighbors Model parameter
Decision rule Label assignment

Output Fault classification

Between test and training sample

x=[V,Lf,THD,P,Q,PF,T]

Euclidean distance

d(Xi'Xj) = \/mel(xi,n - ’Cj,n)2

K-Nearest Neighbors (KNN)

Majority voting

Normal / Sag / Swell / FreqDev / Harmonics / Overcurrent

2.4 Load and renewable modelling

The smart grid load and renewable energy
subsystems are modeled to reflect the actual
daily functioning behavior of the system. The
electricity demand is represented by the 24-
hour base load curve: the load, which fluctuates
between around 34 kW and 56 kW, reflects

how typical residential or business uses can be
handled with higher load in daytime. This base
load has served to provide a non-controllable
basis for the system demand. Together with the
base load, the system comprises flexible
(controllable) loads, including the HVAC,
water pumps, and EVs (electric vehicle)-
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charged units. These loads are represented
through binary decision criteria fixed 6 kW
(HVAC), 4 KW (pump), and 7 kW (EV) power
ratings. Such operational limitations are
established with defined availability windows
and requirements for operating time, which
allow for the satisfying of user comfort and
service needs while permitting scheduling for
price decrease and renewable usage. In the
renewable energy generation model, solar and
wind power sources are integrated. The solar
generation profile is diurnal sinusoidal, with a
peak output of approximately 35 kW in
midday, denoting clear-sky conditions. Wind is
treated as a stochastic input at an average
power of 10 kW and varies over time, yielding
high cumulative renewable output of up to 43
KW at the peak times. The total renewable
energy at each hour is calculated when the
solar and wind contributions from each day are
added together. A total system demand of net
power is derived as the total demand for the
system is the difference between total load
(base plus the flexible loads) and renewable
generation. Where renewable generation
exceeds demand, excess energy is avoided
where possible, and any balance is fixed by
importing electricity from the grid. The

integrated modeling of loads and renewable
sources serves as a realistic basis for the
optimization, allowing for reliable and accurate
evaluation of renewable penetration, demand
flexibility, and energy-saving effectiveness in
the smart grid.

2.5 Optimization formulation

The energy management problem is
defined as a  Mixed-Integer  Linear
Programming (MILP) model to plan flexible
loads of a smart grid with solar-wind
generation, while minimizing the electricity
cost of importing electricity from the grid.
Each day, the decision variables will be binary
ON/OFF states for controllable loads (HVAC,
pump, EV) and an hour-per-hour grid import
power. The output formulation dictates the
required operating duration for each flexible
load, respects availability windows, and
ensures that grid import meets the deficit
between demand and renewable generation.
Once renewable generation exceeds total
demand, grid import is zero and the rest of the
surplus is treated as curtailment (reported in
results). The optimization is then solved with
MATLAB for a 24-hour horizon and hourly
resolution.

Table 2: MILP Equations and parameters for smart grid load optimization

Item Description

Equation / Value

Time horizon

Flexible loads

Rated powers

Required ON-hours

Base load

Renewables

Tariff Electricity price

Binary decision

Scheduling period

Controllable devices

Fixed power per load

Minimum operation time

Non-flexible demand

Solar + wind generation

Load status

t=12,...,T,T = 24

i € {1,2,3} (HVAC, Pump, EV)

P, = [6,4,7]kW

E; = [10,4,6] hours

L.(kW), e.g., 34 — 56 kW

Ry = S, + W, ( kW), up to = 43 kW

(c_t\in {0.09,0.13,0.22} \ $/kWh

ui,t € {0,1}
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Grid import

Availability window

Obijective function

Purchased power

Allowed operation

Minimize grid cost

G, = 0(kW)
u; . = 0 if not allowed (from allow( i, t))

minY{_, ¢, G,

ON-hour constraint

Power balance (deficit coverage)

Non-negativity

Curtailment (reported)

Enforce required operation

Grid must cover deficit

Surplus renewable (post-processing)

T . .
Ye=1Wie = E;, Vi

Gt > LL‘ + ZL-Piui,t - Rt, YVt

Physical feasibility G, =0

Ce = max(R, — (L¢ + X Pyuye), 0)

2.6 Evaluation metrics

In order to quantitatively assess the
performance of the proposed Al-enabled smart
grid framework, fault detection classification
metrics and energy management (optimization)
metrics are employed. For fault detection, the
predicted class labels are compared with the
true labels using the confusion matrix, and

precision, recall, Fl-score, and overall
accuracy are calculated for each fault category
and for the overall model. To optimize the
load, economic and operational indicators are
calculated to measure the effectiveness of
renewable utilization, grid  dependency
reduction, and cost minimization over the 24-
hour scheduling horizon.

Table 3: Evaluation metrics for fault detection and load optimization

Category Metric

Equation

Meaning

Confusion

C;; = # samples with true class i

Fault Detection

Matrix
K
| . Acc = i=1Cii
Fault Detection Accuracy cc = W
i=14j=1"1]
. Precision TP;
Fault Detection (Class i) Prec; TP, + FP,
. Recall (Class i TP,
Fault Detection Rec;
) T TP Y FN,
: F1-score 2Prec;Rec;
Fault Detection ) F1; =
(Class i) ' Prec; + Reg;
. — 1
Fault Detection Macro-average 1= e K F1,

predicted as j

Detailed error distribution

Overall correct classification rate

Reliability of detected class i

Ability to detect all class i
events

Balance between precision and
recall

Equal-weight performance
across classes
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. i n
Fault Detection Weighted F1, =YK wF1;,w; = — Accounts for class imbalance
average N
Optimization Total Cost J =3, ¢G, Total grid energy cost
Optimization Grid Energy Egiq = ST GAt Grid dependency (kWh)
o Renewable ol s Renewable energy actually
Optimization Utilization Eren,usea = L=y min(Re, De)AL consumed
Optimization Cugt;:lr;n;nt E.w = YI_;max(R, — D;, 0)At Wasted renewable energy (kWh)
Optimization P??](pSrrtld Grax = max, (G,) Worst-case grid stress
Lo Demand ;
Optimization Definition Dy =L¢+ Y Pu, Total demand (base + flexible)

Data Preprocessing

* Cleaning
* Normalization
¢ Feature Vector Formation

-

Al-Based Fault Detection
(Custom KNN Classifier)

v

Fault Classificstion
Normal / Sag / Swell /
FreqDev / Harmonics / OC

v

Load & Renewable Modeling
» Base Load
* Flexible Loads
* Solar & Wind Generation

+

Optimization Formulation
(MILP - Cost Minimization)

v

Optimal Load Scheduling
* Grid Import
* Load ON/OFF Decisions
e Curtailment Handling

Figure 1. Flow chart
3. Results and Discussion

The results presented below are critical
studies of the results of the Al-supported 10T-

based smart grid framework for fault
identification and load optimization under
renewable energy integration. The results are
organized to conduct a thorough assessment of
the electrical fault classification performance
and the energy management efficiency of the
system. First, the statistical behavior of the
acquired lIoT measurements are investigated in
order to reveal the physical behavior of
important electrical and thermal parameters at
both normal and faulty operating scenarios.
The effectiveness of the Al-based fault
detection model is further evaluated using
class-wise performance metrics, confusion
matrices, and feature-level analyses, which
give an indication about the ability of the
model differentiating between minor and
dramatic ~ power  quality  disturbances.
Simultaneously, the results of the Al-driven
load optimization strategy are described in
order to illustrate the role of flexible demand
scheduling and renewable energy usage in
influencing grid operation, cost, and
curtailment. analyze hourly power balance, cost
profiles, and key performance indicators to
determine the economic and operational
benefits obtained from our proposed approach.
In particular, draw reference to the physical
interpretation of the results and connect visible
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numerical trends to real-world smart grid
behavior. Overall, this section confirms the
efficacy of the designed framework in
improving fault detection reliability, renewable
penetration, and operational efficiency,
pointing both to Ilimitations and to
opportunities for improvement as well as the
possible future application of the proposed
framework.

Figure 2 presents the general class
distribution of the simulated loT dataset used
for smart grid fault detection. It is evident that
the Normal operating condition significantly
dominates the dataset with about 4,800 samples
representing around 80% of the data, which is
directly related to the fact that most of the time,
the power systems run under the normal
condition. Fault cases do occur a little more
rarely, which is why there are far fewer
abnormal cases. The Voltage Sag, Voltage
Swell, Frequency Deviation, Harmonics and
Overcurrent faults each of which include
approximately 220-260 samples, and thus must
show a consciously even distribution of faults.
In physical terms, this distribution corresponds
to real power systems where disturbances such
as sag/swell and harmonic distortion are
intermittent states, not continual ones. The
larger number of samples among fault classes
means that the learning algorithm does not
have a bias towards some fault mechanism.
Nonetheless, the strong imbalance between
normal and faulty conditions speaks to a
practical operational difficulty for smart grid
monitoring systems. This imbalance highlights
critical requirements of strong Al models that
can detect low frequency but essential faults
with high reliability. The correlation heatmap
that can be extracted from the measured IoT
features for intelligent grid fault detection is
shown in Figure 3, where V_pu, | _pu, f Hz,
THD%, P_kW, Q_kVAr, PF, and Temp_C are
the IoT’s features. As expected, the diagonal
components all contain a perfect relationship of
one and confirms the robustness of the
correlation matrix with 1.0. There is a
moderately negative correlation (¢.—0.4 to -0.5)
between voltage and current that verifies a
load-dependent model in which voltage

decreases a bit with a higher current (in
stressed conditions). Power factor has high
negative relationship with THD% (-0.6) which
means that harmonic distortion has strong
negative impact to the quality power and hence
decreasing the possibility to efficiently use the
power. could observe a small and moderate
positive correlation (approximatively 0.45)
between current and temperature, which is
practically  related, which is directly
proportional to higher Joule heating when
higher current levels are obtained from Joule
heating. These indicate that active power and
reactive power have only weak positive
correlations, indicating they exert only
intermediate  independent contributions in
different loading and fault conditions.
Frequency is nearly indifferent to other
operating parameters, which indicates grid
control structures that strictly coordinate
frequency with only particular disturbances.
Overall, the low-to-moderate off-diagonal
correlations indicate to us that the selected
features provide complementary information,
which is beneficial for Al-based fault
classification, and can strengthen modeling's
independence from redundant input. Figure 4
shows the confusion matrix of the proposed Al-
based fault detection model applied to loT
measurements inside the smart grid. The results
confirm that Normal operating condition is a
very accurate classification model, with 1,188
examples correctly recognized and no
misclassification as a fault, showing good
discrimination between health and abnormal.
The 50 samples of Voltage Sag fault detected
are correct, but 4 samples are labeled as
normal, indicating slight overlap over mild
voltage drops. As a result, the Voltage Swell
class gets 59 correct predictions, 7 samples
which are misclassified as Normal under
marginal overvoltages. For instance, 38
samples are classified correctly in the
frequency deviation class while 24 samples are
misclassified as Normal operation; hence,
detecting low-magnitude frequency
disturbances is difficult. At this time, the
Harmonics fault perfectly classifies with 67
detections, which means that THD features
definitely play a critical role for identifying
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power  quality  degradation.  Likewise,
overcurrent fault had 63 correct classifications
with zero misclassifying, confirming the
obvious physical signature of high current and
temperature rise. Thus, the confusion matrix
shown that misclassification of most of the
errors is occurring between fault states and
Normal operation, which confirms that very
strong inter-fault separability occurs. These
results verify the efficacy of the chosen loT
features and corroborate the proposed Al
solution for trustworthy smart grid fault
monitoring. The row-normalized confusion
matrix in Figure 5 lists each operational
condition's true-positive recall value in our
smart grid fault detection model. The class,
Normal, has a perfect recall of 1.00, where all
normal operating samples are correctly
identified without mis-identifying faults. The
Voltage Sag fault has a recall around 0.93, in
which 7% of sag events were misclassified as
normal, this physically corresponds to shallow
voltage dips that are very similar to nominal
conditions. Likewise, the Voltage Swell
category achieves a recall of approximately
0.89, and about 11% of swell situations are
regarded as normal, which reflects marginal
overvoltage events. The lowest recall of ~0.61
occurs in the Frequency Deviation class and
39% of samples fall into its normal error,
which implies difficulty detecting small
frequency excursions that do not exceed tight
control limits on a grid. However, Harmonics
and Overcurrent faults have both obtained 1.00
perfect recall values, confirming the great
physical signatures from high harmonic
distortion and high current-induced heating.
Notably, there is no noticeable confusion
among different fault classifications, with off-
diagonal fault-to-fault entries being zero. This
behavior establishes that, in the selected IoT
features, very high inter-fault discrimination is
achieved and that the  fundamental
classification challenge lies in distinguishing
subtle from normal operation that the loT
features exhibit. For all operating conditions,
the Al-based fault detection model is shown in
Figure 6 with each class to show the precision,
recall, and Fl-score of the model. Normal
class, achieving high precision around 0.97,

recall approximately 1.00, and F1-score ~0.98,
indicating the good performance of positive
classification of healthy grid operation. The
Voltage Sag fault shows good performance
with about 0.93 recall and an F1-score similar
to 0.96, which would show a good
identification of the majority of sag events and
few misclassification. Likewise, the Voltage
Swell class has a recall of about 0.89 and an F1
score of about 0.94, indicating an accurate
awareness of the overvoltage status. The
smallest recall in Frequency Deviation fault
(=0.61) causes the lower Fl-score of
approximately 0.75, showing that it is very
difficult to see small frequency deviation from
normal regulated operation. In contrast,
Harmonics and Overcurrent faults also have
perfectly or almost perfectly precision recall
and (=1.00) and F1-scores, illustrating that the
good of their great physical signatures (high
THD concentrations and high
current/temperature acceleration) are easily
detected by the model. Overall, can see from
the figure that although severe power quality
faults, are detected with good reliability, but
slight anomalies like frequency deviations are
found most difficult to detect, this will inform
the focus of future improvements of feature
selection and model sensitivity. Mean and SD
of per-unit voltage (V_pu) for every electric
condition of smart grid is shown in Fig. Under
normal scenario the voltage of the grid voltage
remains just close to 1.0 p.u., but with a small
standard deviation as the voltage stability is
being maintained and regulated in the grid.
Under the Voltage Sag condition the mean
voltage decreased to about 0.85 p.u.; thus,
indicates that the load increases or short-circuit
breaks lead to the undervoltage, whereas a
wide spread is indicated that the sag severity is
different. On the other hand, the Voltage Swell
class shows the highest mean voltage of
approximately 1.12 p.u., showing the
overvoltage scenarios commonly observed with
load rejection or capacitor switching. Although
the Frequency Deviation class's value is near
one point, the frequency deviation as per the
prediction of voltage magnitude and magnitude
of voltage deviation at p.u. is much higher for
this class. Likewise, the Harmonics class
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indicates a relatively nominal voltage, with the
mean not surpassing the nominal level and
reflecting that harmonic distortion does not
affect the actual waveform but rather the
quality of the waveform. With Overcurrent, the
average voltage is around 0.92 p.u., which
would correspond to losses in a line due to

Querall Class

excessive current and thus the voltage drop
physically. In summary, the visualized
structure of the diagram illustrates a clear
voltage-level separation between sag and swell
faults, establishing voltage magnitude as an
important discriminative parameter in Al-based
smart grid fault detection.
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Figure 2. Overall class distribution of loT-based smart grid operating conditions
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Figure 3. Feature correlation heatmap of 10T measurements for smart grid fault analysis
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Figure 6. Per-class precision, recall, and F1-score for smart grid fault classification
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Figure 7. Class-wise mean and standard deviation of voltage (V_pu) under different smart grid operating conditions

In addition, Figure 8 shows the average and
standard deviation of grid frequency (f_Hz) for
different operating conditions in the smart grid.
Normal frequency operates around 50 Hz; the
standard deviation close to zero points out that
primary and secondary frequency control
mechanisms work really well. Also, Voltage
Sag and Voltage Swell classes maintain mean
frequencies near 50 Hz, showing that
significant disturbances for voltage magnitude
are not affecting system frequency. For the
Frequency Deviation class, the mean frequency
is close to nominal but a much larger standard
deviation for a higher frequency deviation,
which is almost 49.4-50.6 Hz. This broad
spread is a physical illustration of the transient

frequency excursions produced by generation—
load imbalance or abrupt disturbances. The
Harmonics and Overcurrent classes show low
deviation from their nominal frequency, which
implies that these faults mainly affect the
quality of a waveform and the magnitude of the
current and not system frequency itself, for its
minor changes. Similar mean values of
multiple classes make it harder to separate
frequency deviation faults from normal ones
when dealing with mean values alone. It
ultimately indicates that frequency variance not
based on mean frequency is the more important
measure for frequency-related faults, therefore
forcing Al models to learn from dynamic and
statistical features that go beyond pure
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averages. Mean value of total harmonic
distortion (THD%) for all smart grid operating
conditions and standard deviation of the
THD% are depicted in Figure 9. In Normal
operation, THD is low (~2%) with little
variation which means that the power quality
levels are acceptable. The THD has almost the
same values for Voltage Sag, Voltage Swell,
and Frequency Deviation classes and the
average THD varies around 2-2.3%, indicating
that the disturbances mainly do not affect
voltage magnitude or frequency but rather the
waveform purity. Unlike the Harmonics Fault,
which shows a relatively high average THD of
approximately 10-11%, and a high standard
deviation, which physically exhibits extreme
waveform distortion caused by nonlinear loads
or power electronic converters. This clear
separation gives harmonic faults a degree of
discernability through comparison with all
other modes. The THD of Overcurrent is
intermediate (~2.3%), suggesting that the
overcurrent is not necessarily inducing
substantial harmonic distortion independently.
This high deviation between the harmonic and
nonharmonic  classes accounts for the
outstanding classification performance on
harmonic faults. In general, the figure
demonstrates that THD% is a significant
discriminative variable for identifying the
power quality degradation of Al-based smart
grid monitoring systems. The mean and
standard deviation of temperature-condition
related to smart grid monitoring operation are
shown in Figure 10. Under normal operation,
the average temperature stays about 35 °C and
only slightly varies depending upon the
application, implying a thermal behaviour
stability of grid components. The mean
temperatures of the Voltage Sag and Voltage
Swell classes  are relatively  high
(approximately 36 °C), a result of transient
current changes in response to a voltage
interruption. Frequency Deviation class also
reached the comparable temperature, which
indicates that the frequency excursions affect
the thermal conductance only slightly. In the
Harmonics class the mean temperature appears
closer to nominal, indicating that harmonic
distortion doesn’t heat things in a big manner;

it actually affects the quality of the waveform.
While Overcurrent faults show significantly
higher mean temperature close to 49-50 °C,
but this has larger standard deviation which
signifies excessive Joule heating as a result of
persistent high current flow. Hence, this very
clear thermal separation clarifies the strong
performance in classification of an overcurrent
fault. In general, the figure demonstrates that
temperature is an extremely informative metric
for current-related faults and complements
electrical metrics in Al-based smart grid
monitoring systems. Using a jitter scatter plot,
the distribution of per-unit voltage (V_pu) of
each operating condition is presented in Figure
11, highlighting both central tendency and
dispersion of single samples. The Normal
operating condition is a dense cluster around
1.0 p.u., showing stable voltage regulation with
limited dispersion. While the Voltage Sag class
exhibits a clear descending tendency,
exhibiting most of the samples over 0.80-0.90
p.u., and directly corresponds to undervoltage
events due to abrupt increases in workloads or
short-circuit conditions. The Voltage Swell
class has well-defined separations, where
voltage values fall between 1.10 and 1.18 p.u.,
indicating that the high voltage conditions are
caused by load rejection or capacitor switching.
The Frequency Deviation category has voltages
that are relatively close to nominal but has a
somewhat higher dispersion indicating the
voltage magnitude does not appear to be
affected significantly by frequency effects. In
the same manner, the Harmonics group tends to
be clustered near 1.0 p.u., and it shows that the
harmonic distortion seems to dominate the
waveform quality and not the voltage level. For
the Overcurrent, there exists a marked drop in
the Overcurrent class, with an emphasis of
decreasing voltages between 0.88 and 0.95 p.u.
because under high current flow voltage drops
correspond to increasing line losses. In general,
the distinct visual separation of sag and swell
groups is clear evidence of the powerful
discriminant performance of voltage magnitude
and the overlap between other classes is what
makes it necessary to further study with
multipath, Al-based multi-feature analysis.
Plotting grid frequency (f_Hz) for different

14



Ammar Jalal Abdulrazzaq Al-Tabatabaee / Al-Rafidain Journal of Engineering Sciences Vol. 4, Issue 1, 2026: 01-27

operating and fault classes using jitter scatter
plot (Fig. 12). The Normal operating state
comprises a compact cluster close to 50 Hz
which indicates good regulation of frequency
and least fluctuations inside and outside of this
condition. Voltage Sag and Voltage Swell
show similar narrow frequency distributions
near 50 Hz, and indicate that disturbances of
voltage magnitude do not significantly
influence system frequency. A completely
different trend can be determined for the
Frequency Deviation class which has a vertical
spread around 48.5-51.5 Hz, it suggests a
transient frequency shift resulting from sudden
generation—load imbalance or control delay.
This kind of dispersion without an apparent
change in mean value is characteristic of
frequency-related fault. Harmonics still hovers
close to nominal frequency, affirming that the
harmonic distortion impacts waveform shape
and not frequency stability. The Overcurrent
class also presents small deviations in
frequency which is suggesting that too much
current flow doesn't affect the frequency of the
system. Taken together, the Figure explicitly
shows that frequency variance is an important
discriminative attribute for frequency deviation
faults, whereas mean frequency alone does not
offer substantial separation from any other fault
type, making it logical to need Al models that
target higher-order statistical components. The

distribution of total harmonic distortion
(THD%) for wvarious operating and fault
conditions is presented in Figure 13 as a jitter
scatter plot. Normal has a dense cluster of THD
between 1% and 3%, which is appropriate
quality of power for steady-state operation. The
THD distributions are similar for VVoltage Sag,
Voltage Swell and Frequency Deviation where
THD remains mostly below 4%, and the
disturbances do not actually introduce any
significant effect on the waveform distortion.
This behaviour was very different for the
Harmonics fault, where THD values sharply
exceed and become concentrated in the range
of around 8%-13%, which is simply showing
the physically sharp waveform distortion
caused by nonlinear loads or power electronic
devices. Such a clear separation accounts for
the superior classification behavior observed
for harmonic faults. The THD of the
Overcurrent class is moderately high (~1-
3.5%) which illustrates that high magnitude of
current doesn't necessarily provide a strong
content of harmony. Due to the relatively
limited overlap between harmonic and non-
harmonic classes, THD% is suggested as an
extremely discriminative property. In general,
the figure validates that THD distribution is a
good representative of physical aspects of the
power quality loss and provides a good input
for Al-based smart grid fault detection systems.
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Figure 8. Class-wise mean and standard deviation of grid frequency (f_Hz) under different operating conditions
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Figure 9. Class-wise mean and standard deviation of total harmonic distortion (THD%) for smart grid operating
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Figure 11. Distribution of voltage (V_pu) by fault class using jitter scatter representation
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Figure 12. Distribution of grid frequency (f_Hz) by fault class using jitter scatter representation
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Figure 13. Distribution of total harmonic distortion (THD%) by fault class using jitter scatter representation

It generates a jitter scatter plot in Figure 14
in order to portray the temperature (Temp_C)
distribution for different operating and fault
conditions for the smart grid. For Normal
operating condition, temperatures are mostly
clustered from approximately 25 °C to 45 °C
and centred around 35 °C, indicating a stable
thermal state in the grid components in nominal
loading. The Voltage Sag and Voltage Swell
classes have a wider temperature distribution to
4548 °C due to transient current shifts due to
voltage  perturbations.  The  Frequency
Deviation class shows a broader spread, with
temperatures anywhere from 25 °C to above 50
°C, indicating intermittent thermal stress owing
to dynamic load—generation imbalance. The

Harmonics fault is characterized by relatively
higher temperature dispersion with respect to
the reference conditions and likely further
losses from distorted waveforms and increased
RMS current. For the Overcurrent class, the
temperature values are much more extreme,
falling between 40 °C and 65 °C, physically
representing excessive Joule heating with a
high current in a long run. This robust thermal
separation enables to achieve very high
detection performance for overcurrent faults. In
general, temperature distribution is very
important and complementary for any Al-
driven smart grid monitoring system to identify
current-related faults and thermal stress test.
One illustration of such a real-time 10T data
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stream captured from smart grid (in Figure 15)
depicting the changes in voltage and frequency
(V_pu and f_Hz) while also considering that of
total harmonic distortion (THD%) over a
sequence of test instances (Fig. 15) s
presented. The voltage signal is still very
clustered around ~1.0 p.u. reflecting stable
voltage regulation with slightly fluctuating
loads during a normal operation. The frequency
trace is centered around 50 Hz with extremely
minor deviations, showing the effective grid-
frequency control in the operation standard
conditions. In contrast, the THD signal has
sharp spikes that occur once in a while up to a
power electronic switching or a nonlinear load,
both of which create transient harmonic
disturbances that are physical evidence of the
behavior of the system. All these short-term
THD peaks are present without noticeable
change in voltage or frequency, indicating the
disjunction between the harmonic distortion
and basic electrical quantities. By visualizing
multiple parameters at once, it is demonstrated
how fault signatures affect the results of a
system over time. Multi-sensor 10T monitoring
is crucial to capture rapid transient phenomena
that static analysis probably will not pick up.
At large, temporal patterns revealed indicate
the importance of Al-based streaming analysis
that can catch abrupt power quality
disturbances in  smart grid real-time
applications. Fig. 16 shows the hourly changes
of base load, flexible-adjusted load, renewable
generation and grid power importing during 24
hours of operation. The base load exhibits a
predictable daily pattern of demand, which
tends to rise during the day and decrease after
dark. Given the flexible loads, a conscious shift
of load in the baseline + flex curve is observed
that is especially significant during off-peak or
high renewable hours, clearly showing how
intelligent load management has resulted in
optimization. There is a strong daytime peak in
renewable generation reaching around 35 to 40
kW at midday, consistent with maximal solar
availability and wind contribution. With higher
renewable output the import from the grid is
reduced dramatically from 30 to 40 kW at the
beginning of the hour to virtually zero after 18
hours and 22 hours, which will support the use

of local and renewable resources. At these
times renewables generation capacity is enough
to cover most of the demands, reducing
reliance on the grid. Power generation, when
output is low in the early morning and late
evening, is an increase in import according to
the grid usage deficit. The figure illustrates
quite nicely how orchestrated renewable
integration along with load flexibility can
smooth demand, reduce grid dependency and
ensure system sustainability. At a glance,
findings provide evidence to the efficacy of Al-
based optimization in enabling the efficient and
balanced smart grid optimization. The hourly
energy cost ($) per unit of grid electricity (over
a 24 hour period) under the new Al-assisted
load optimization strategy is presented in
Figure 17. At early morning hours (1-5), there
IS an average energy price between 2.7 and 3.5
USD attributed by this, demonstrating a
medium dependency to the grid and low-cost
tariffs. The peak of the cost of energy is around
4.2 USD when hours 6 to 10 have the highest
demand corresponding to the increasing load in
conjunction to rising tariffs periods and very
low renewable contributions. Hour after hour,
as renewable generation starts increasing
during midday, the hourly cost of the
renewable generation gradually decreases to
approximately 2.5 USD (hour 14). The largest
savings are apparent during the late afternoon
and evening (18-21) periods in which the cost
decays steeply nearing zero, suggesting near-
complete dependence on renewable energy and
negligible grid penetration. During this time,
flexible load scheduling is very successful at
matching demand to renewable availability.
During the late-night hours, a slight inflation of
cost occurs again as renewable generation
decreases and grid import is reinstated.
However, the figure alone shows that, Al-
enabled load optimization and renewable
integration significantly decrease operational
energy costs, especially at peak renewable
generation times, which in turns enhances
economic efficiency and grid sustainability.
Figure 18 shows the ON/OFF scheduling
heatmap of flex loading (HVAC, Pump and EV
charging) over a 24-hr horizon based on Al
based load optimisation. A value of 1 (yellow)
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Is an active load and O (blue) shows an inactive
load. The HVAC system works mostly in the
morning (1-7) and extends again in the evening
(18 and 22-24) at temperature levels
acceptable for thermal comfort and to reduce
the cost of energy. Water pump intermittently
operate, is mostly in hourly interval (hour 7,
hours 18-20, and hour 24), as pump duty is
diverted in those high demand hours. It is very
obvious that EV charging is mostly between
13-17 hours midday and at briefly at hour 21 —
when the most renewable is generated and the
least grid load must be injected. This
orchestrated scheduling helps reduce the joint
operation of power demands during the most
times of Grid peak stress. So Overall, the
heatmap shows that the Al controller is
successful to keep flexible loads at bay, match
consumption with renewable generation and
reduce the dependence on grid power. This
approach increases efficiency of the network
and reduces operational expenses, it also allows
for the integration of stable renewable power in
the smart grid. Hourly renewable electricity
usage and levels of curtailment occurring over
a 24 hour period are shown in Figure 19 using
the Al-integrated smart grid. The use of
renewable energy grows steadily during the
early morning hours until hour 11, when the
utilization of renewable energy increases from
nearly 13 kW at hour 1 to over 30 kW at hour
11, because of the increasing generation of
solar energy. The peak load usage is realized
during afternoon and early evening hours (18 -
22 hours) when consumption of renewable
energy goes above 40 kW of the energy
generated, suggesting the load-demand is well
matched at this point in the load, i.e. energy
with renewable power provision. The amount

of curtailment is next to negligible all day long,
a clear indication that the Al controller can
efficiently absorb the energy that renewable
power by scheduling load with limited limits to
load with the AI controller’s ability to absorb
renewable. Small curtailment events are seen in
hours 18-22, with peak curtailment values
falling well under 2 kW, perhaps a reflection of
the temporary surplus demand and flexibility
limits beyond the instantaneous demand. Taken
as a whole, this demonstrates that the proposed
way gives good renewable generation
utilization at low curtailment, increasing the
system performance and facilitating sustainable
integration of renewable energy supplies within
smart grid. Figure 20 displays the main energy
Key Performance Indicators (KPIs) to represent
the overall smart grid operation during the
analyzed period. The overall amount of
renewable energy used is approximately 700
kWh, which is higher than the grid-imported
energy of about 490 kWh, showing that it relies
heavily on renewable energy. This indicates the
Al-based energy management strategy is
successful at ensuring clean energy usage
ahead of grid provision. It is to the fact that the
curtailed energy is extremely low (=3—4 kWh,
less than 1% of total renewable generation),
which indicates the efficient load shift and
flexibility resource usage. This low amount of
curtailment is a strong point for the system; a
demonstration of capacity to trade-off demand
and renewable provision. Taken together, these
KPIs show that the proposed control
framework is capable of achieving high
renewable penetration, high grid independence
and low energy waste and contributes towards
delivering economic savings as well as
sustainability goals of smart grid operations.
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Figure 14. Distribution of temperature (Temp_C) by fault class using jitter scatter representation

Figure 15. Example loT measurement stream showing voltage, frequency, and harmonic distortion in test samples
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Figure 16. Hourly power balance between load demand, renewable generation, and grid import
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Figure 17. Hourly energy cost profile under Al-optimized smart grid operation
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21



Ammar Jalal Abdulrazzaq Al-Tabatabaee / Al-Rafidain Journal of Engineering Sciences Vol. 4, Issue 1, 2026: 01-27

Key Energy KPIs
I

GridEnergy,Wh

Renewlsed,Wh Curtail,Wh

Figure 20. Key energy performance indicators (KPIs) of the Al-based smart grid system

Table 4 summarizes the statistical statistics
for all essential electrical and environmental
parameters utilized in the Al-enabled smart
grid analysis. According to V_pu, the voltage
magnitude (V_pu) shows a mean value of
0.9959, which is very close to the nominal
value and values below 0.7514 and above
1.2058, suggesting that the voltage sag and
swell events exist. The frequency (f_Hz) of the
grid is tightly regulated at a value around
50.002 Hz, but deviations of 48.354 Hz and
51.722 Hz give evidence of frequency
disturbances. During load and overcurrent
conditions, the current (l_pu) shows a larger
variability from 0.4654 to 1.9165. The average
active power (P_kW) of 40.39 kW with the
peaks being around 79.5 kW indicates high
demands. The reactive power numbers
(Q_kVAr) range from negative to positive
values, which represents shift in active
operational modes — capacitive or inductive.
The power factor (PF) is still high at 0.91, the
minimum is ~0.61 indicating efficiency losses
in disturbances. Harmonic distortion (THD%)
is generally an average of 2.35% and can be of
up to 13.84%, reflecting that the harmonic
events were very intense. The temperature
(Temp_C) continues to fluctuate from 15.7°C
to 68.2°C indicating that electrical stress is
related to thermal load. In general, these
statistics confirm on the richness of the dataset
and its use in intelligent fault and load
optimization research. Table 5 shows the
distribution of normal and abnormal operating

conditions applied during the training and in
the performance testing of the Al based fault
detection model. The class Normal
predominates in this table, consisting of 3612
training and 1188 testing samples, which is
characteristic of regular operation of the grid,
which contributes the strong baseline learning.
Fault classes such as voltage sag (233 samples)
and voltage swell (235 samples) are the least
frequent and often show randomness because
they are rare in real-life power systems. This
group of samples provides equal representation
for disturbance classification as frequency
deviation, harmonics, and overcurrent faults
have similar sample sizes: 235-250 total
samples. This deliberate class imbalance
simulates real-world smart grids, where normal
conditions are much more common than faults.
The custom KNN classifier (k = 7) had an
overall accuracy of 97.67% using this dataset
due to high discrimination ability, with slightly
biased distributions. Indeed, the extreme
accuracy Vverifies that the chosen features
successfully capture the physical signatures of
each fault type. In addition, implementation
without toolbox emphasizes the computational
efficiency and deployability of this method for
real-time loT-based smart grid monitoring. As
shown in Table 6, the detailed classification
performance of the proposed Al-based fault
detection system is presented in Table 6 for
each power quality condition. In the normal
operating state perfectly remembered: it has
1.00 and F1-score equals 0.985, therefore there
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iIs no misclassification of healthy grid
conditions. Voltage sag and swell faults exhibit
an accuracy of 1.00, which means that all the
detected events are in fact true faults, however,
recall of 0.926 and 0.894 respectively represent
few missed events due to overlapping voltage
characteristics. And the recall is the lowest for
the frequency deviation class (0.613), that is
because the challenge is in distinguishing
subtle fluctuations in frequency from its normal
deviation. Harmonics and overcurrent faults
perform similarly perfectly (precision, recall,
F1 = 1.00) also confirming their very strong
electrical signatures and distinctness. The
macro F1-score is 0.942, which shows that this
system works well for all types of faults, while
the weighted F1-score is 0.975 and overall
accuracy is 97.67%, which suggests strong real
world reliability. The results affirm the
successfulness of the chosen features and
customized KNN model for loT smart grid
fault monitoring. Scheduling the hourly
operation schedule in the smart grid integrates
renewable energy sources into flexible demand

management is shown in Table 8. For early
hours (1-6), the output is much more
dependent on grid import (=35-42 kW) in the
absence of solar generation, which results in
reasonable hourly costs of $3.1-3.8 for the low
tariff of $0.09/kWh. From hours 8-17 an
increase in solar penetration (up to 35 kW)
reduces net demand even with charging by EV,
resulting in a net import of only 12.8-19.1 kW.
At hours 18, 21 and 22, renewable generation
is more than total supply, leading to negative
net demand at curtailment values of 1.68 kW
per hour, even at peak prices of $0.22/kWh
with zero grid import. Flexible loads are
positioned to peak at high renewables hours, to
reduce operation costs. Hour 20 has the
smallest hourly cost ($0.04), demonstrating the
efficiency of coordinated load scheduling
combined with renewable energy utilization.
As a whole, the table verifies that intelligent
demand response with renewables significantly
decreases both the requirement for power and
cost and balances systems.

Table 4: Statistical summary of electrical and environmental features in the smart grid dataset

Feature Mean Std Min Max Physical Meaning
Vpu 0.9959 0.0472 0.7514 1.2058 Per-unit voltage magnitude
fHz 50.002 0.1353 48.354 51.722 Grid frequency
Ipu 0.7995 0.1931 0.4654 1.9165 Per-unit current
Pkw 40.391 8.5099 7.0123 79.496 Active power

QkVAr 12.117 5.2861 -7.8446 33.441 Reactive power

PF 0.9104 0.0471 0.6095 1.059 Power factor

THD % 2.3522 1.7627 -1.0454 13.838 Harmonic distortion

TempC 35.744 5.3707 15.71 68.191 Equipment temperature
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Table 5: Class distribution of power quality conditions in training and testing datasets

Class ID Class Name Training Samples Testing Samples Total Samples
1 Normal 3612 1188 4800
2 Sag 179 54 233
3 Swell 169 66 235
4 Frequency Deviation 185 62 247
5 Harmonics 168 67 235
6 Overcurrent 187 63 250

Table 6: Per-class and overall performance metrics of the Al-based fault detection model

Class ID Class Name Support Precision Recall F1-Score
1 Normal 1188 0.971 1.000 0.985
2 Sag 54 1.000 0.926 0.962
3 Swell 66 1.000 0.894 0.944
4 Frequency Deviation 62 1.000 0.613 0.760
5 Harmonics 67 1.000 1.000 1.000
6 Overcurrent 63 1.000 1.000 1.000

Table 7: Optimized hourly energy scheduling and cost analysis in a renewable-integrated smart grid

Flexible
Hour Eg;g Renewable | Solar | Wind Lg?\tlﬂs E:J?é De':lne;n q Igpr)igrt Price Hgg;{y Curtailment
(KW) (kw) (kW) | (kw) (/I—L\Jﬁ;g W) | (kw) (kW) ($/kWh) ) (kw)
/ EV)

1 | 4174 12.75 0.00 | 1275| 1/0/0 6 34.99 | 34.99 0.09 3.15 0
6 49.44 13.46 0.00 | 1346 | 1/0/0 6 41.98 41.98 0.09 3.78 0
8 | 5042 22.74 9.06 | 13.69 | 0/0/0 0 27.67 | 27.67 0.13 3.60 0
12 | 55.99 31.05 24.75| 6.30 | 0/0/0 0 24.94 | 24.94 0.13 3.24 0
15 | 45.21 37.81 3234 | 547 | 0/0/1 7 14.41 14.41 0.13 1.87 0
18 | 34.52 40.91 35.00| 591 | 1/0/0 6 -0.39 0.00 0.22 0.00 0.39
21 | 34.64 43.14 32.34 11080 | 0/0/1 7 -1.50 0.00 0.22 0.00 1.50
24 | 39.76 36.74 247511199 | 1/1/0 10 13.02 13.02 0.09 1.17 0
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Most of the previous research has explored
smart grid technologies such as artificial
intelligence and loT especially with regards to
fault detection, energy management or the
renewable integration, often treated as distinct
problems. For instance, Adefarati et al. (2025)
presented an extensive survey of Al- and loT
integrated solutions for renewable-dominant
power systems to a high degree, focusing on
forecasting and monitoring, but with no explicit
optimization framework. Thus, Alijoyo (2024)
and Areola et al. (2025) investigated Al based
energy management and renewable optimisation
models, but focused only on smart buildings or
solar with storage and not on grid-wide fault-
aware operation. For example, Arévalo and
Jurado (2024) have worked on Al-supported
planning and dispatch of distributed energy
systems while Rana (2025) and Nuruzzaman et
al. (2025) focused on fault detection and
predictive maintenance without linking it to
operational load scheduling. In comparison to
those earlier works, this study presents a single
Al-facilitated loT-based smart grid system that
implements multi-class fault detection and cost-
effective load optimization at a high renewables
level. Different from the previous work that
attempts to assess fault detection and energy
management in isolation, directly connect the
results of real-time classification of fault to
operational decisions related to load control and
renewable production. In addition, the method
proposed combines the physical electrical
characteristics (V, I, f, THD, P, Q, PF, and
temperature) and a computationally efficient,
toolbox-free Al model with a mixed-integer
optimization formulation that is suitable for
practical deployment and immediate adaptation.
This integrated strategy is a major improvement
on past research and fills important voids
associated with operational resilience, renewable
utilization efficiency, and smart grid autonomy.

4. Conclusions

Introduced an integrated fault detection
system and load optimisation process to use an
Al-informed loT-based smart grid under the
renewable energy integration. The results
obtained are unambiguous in proving the
efficiency and practical effect of the approach.

The fault detection model, based on Al, had a
total classification accuracy of 97.67%, perfect
detection performance across all major fault
types (harmonics and overcurrent Fl-score =
1.00), with excellent performance toward
voltage sag, swell, and frequency deviation.
Hence, these findings validate the robustness of
the proposed model to correctly characterize
different types of grid disturbances with
immediate 10T measurements. From an energy
management viewpoint, the optimized energy
optimization framework substantially improved
renewable energy usage, and provided around
700 kWh renewable compared to 490 kWh grid
imported energy, reducing the dependence on
traditional energy. At < 1% of total generation
renewable energy curtailment, indicates very
effective coordination between flexible loads
and variable renewable supply. Moreover,
intelligent scheduling of controllable loads
proved effective at improving peak grid import
and reducing overall electricity cost during peak
tariff times. In sum, findings indicate that this
framework can effectively integrate accurate
fault detection, cost-effective load scheduling,
and renewable integration in a seamless and
computationally efficient framework. The
proposal not only offers a reasonable plan to
strengthen the reliability, sustainability, and
operation efficiency of smart grids, but also
establishes a baseline for the development of
future real-time intelligent energy management
projects.

Further study can add to the present study by
verifying the proposed mechanism in real-world
smart grid or SCADA datasets to test its
robustness in operational terms. might then
investigate new Al approaches (e.g. deep
learning or hybrid ensemble models in case of

advanced data analytics) that offer better
detection of finer-scale faults, especially
frequency deviation events. Furthermore,

including energy storage and electric vehicle-to-
grid (V2G) technologies into the optimization
model can improve system flexibility and
subsequently  reduce  further  renewable
curtailment. The incorporation of cybersecurity
and anomaly detection capabilities also becomes
a must-have to counter cyber—physical threats in
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loT-enabled smart grids. Lastly, extending the
optimization time scales into multi-day or
seasonal schedules would add another layer of
understanding regarding long-term operational
planning and system resilience.
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