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The first factor is The P. aeruginosa bacteria-based
bacterial inoculate at two levels, BO and B1. The
second factor is white fungus waste, which was added
at three levels and coded as AbO, Abl, and Ab2.
Thirdly, Zinc and boron nanoparticles was
incorporated into four levels coded NO minus
addition, N1 nano Zinc, N2 nano Boron, and N3, a
combination of both nano boron and nano zinc. It was
carried out under field conditions employing a
randomized complete block design (RCBD). Its
presence was ascertained by subjecting the initial soil
sample to the estimation of the pesticide accumulated
in it by GC-MS. They further identify the kind of
pesticide accumulating in the soil and then select for
that specific high-resistant bacterium strain against
such high concentrations of that identified pesticide.
From the rhizosphere of the sugar bean plant, P.
aeruginosa was isolated and used as a bacterial
inoculum during a series of laboratory and field
experiments. All combinations with a bacterial
inoculum were degraded entirely compared to their
control; their control had 18.090 mg kg™ soil.

Keywords: Chlorpyrifos,
mushroom waste, Nano zinc.
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Introduction

Pesticides are significant crop protectors when the crop is under siege from one or
a cohort of resident or imported pests. This unbalanced use of pesticides, though, has
most, unfortunately, contributed to increased pollution of soil, water, plants, and air in
most parts of the world, notably in all the little thanks to the likes of chlorpyrifos that
tend to linger long within the environment and are detected in soil and water (54),
posing a risk not just to humans but also animals as well, for these are toxic compounds
that bear significant, serious, and destructive damage. Despite this, farmers use them
in excess of the required quantity since they offer a high monetary return and are highly
beneficial and convenient (39 and 42). Therefore, there is a pressing need to intensify
the efforts directed at diminishing these pollutants’ negative impact through the use of

1067


mailto:Zzaah94@gmail.com
https://orcid.org/0009-0003-3693-9992
https://orcid.org/0009-0008-9038-0348

Anbar J. Agric. Sci., Vol. (23) No. (2), 2025. ISSN: 1992-7479 E-ISSN: 2617-6211

modern scientific techniques which may include bioremediation by microorganisms
such as bacteria and fungi because bioremediation is a typical application of bacterial
metabolism for the degradation of pollutants, On August 3, 2011, the US
Environmental Protection Agency published in the Federal Register FR-3-000 a formal
list wherein the triphosphate TCP compound is among the toxic chemical compounds
that may cause several multiple diseases; hence, there is urgency to get rid of these
residues from the soil 2 - Isolation and identification of bacteria most tolerant to
Chlorpyrifos pesticide polluted soil, and bioremediation could take place
spontaneously through dilution or eradication or the process of bioremediation can be
enhanced through the addition of fertilizers, which increases the bioavailability of
pollutants and supports biostimulation. This method involves the use of compatible
microbial strains, referred to as augmentation, to improve the effectiveness of
pollutant-degrading microbes. Scientific literature has shown promising results with
this approach, demonstrating significant success in enhancing the degradation of
contaminants (3). Overall, the combination of biostimulation and microbial
augmentation presents a powerful strategy for improving bioremediation outcomes
Pseudomonas bacteria is one of the key actors in bioremediation and biodegradation
by producing metabolites acting as a biosurrogate role for antibiotics mainly involved
in breaking down complex organics such as pesticides (44). Most food fungi are
heterotrophic microorganisms that lead a saprophytic life, breaking down and
analyzing the basic materials present in their environments from plant and organic
waste. This is one of the essential treatments to reduce environmental pollution
accumulating in agricultural waste, air pollution, and CO> gas if these wastes can be
disposed of by burning (19). Moreover, the growth of fungal mycelium on the wastes
increases their protein content while reducing the carbon-to-nitrogen ratio. It amends
them with several enzymes to decompose organic matter (7 and 53), including cellulase
and alkenase, which will feed the nutrients in a form ready for absorption and
assimilation into the plant without much effect on its growth and productivity (10 and
24). As studies have indicated, the unique construction of nano fertilizers with targeted
delivery or slow-release mechanisms can provide a more accurate responsive
operational release of their active components concerning environmental stimuli and
biological requirements. Nanofertilizers improve nutrient use efficiency, reduce soil
toxicity, minimize potential adverse effects of overdosage, and reduce application
frequency; thus, nanotechnology holds enormous potential for achieving sustainable
agriculture, particularly in developing countries (4). Mainly, fertilizers provide macro
elements usually found deficient in the soil; nearly 35-40% of crop productivity is
attributed to fertilizers, but some fertilizers directly influence growth. Nanofertilizers
can thus be applied as an alternative to mineral fertilization and conventional
fertilization to solve these problems relating to low fertilizer efficiency (48).

They operate uniquely compared to traditional fertilizers because of their nano-
dimensions, which are attributed to two factors. First, the ratio of their surface area to
volume has been increased beyond what it is in the natural state due to the small
diameter of the molecules, while the second one varies in terms of properties like
hardness, color, strength, chemical activity, thermal properties as well as electrical
conductivity. This means that they have a substantial external surface, so more of their
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molecules lie on external surfaces, so more interact, thereby showing higher chemical
activity. Secondly, the effects of nanomaterials are quantitative. Having small
diameters, they are not entirely under classical physics but under quantum physics (46
and 51).

hence giving them increased quantitative effect. Nanofertilizers are a substantial
biostimulating factor for microorganisms in increasing the general decomposition of
Pesticides. Hence, this study aimed to determine the role of P. aeruginosa bacteria in
the breakdown of an active ingredient of an insecticide in soil, specifically in
Chlorpyrifos, after 120 days of incubation with soil.

Materials and Methods

Collecting soil samples: Soil samples were taken at 0-30 cm depth related to
plowing, avoiding special areas like piles of fertilizers and pesticides or where animals
usually gather. The samples were collected from an experimental field of the
Agricultural Research Department/Diwaniyah Research Station on 15th January 2024
and stored until pesticide residues were analyzed biologically, chemically, and
physically (Table 1).

Table 1: Some physical-chemical-biological analyses of the study soil before

planting.
Attribute Value Unit
pH 1:1 7.23 -
EC1:1 4.78 dsm?
Cat2 11.20
Cations Mg*? 6.58
Na*! 4.76
K+t 2.6
lons CIt 16.17
SO, 5.95 Meq mol*
CO32 Nill
HCO5! 3.60
CEC 15.18 Cmolc Kg'* soil
CaCOs 201.00 g Kg* soil
Organic Matter 1.69 %
Total bacteria 26.33*107 CFU gt dry soil
Total fungi 5.20*10° CFU g dry soil

Estimation of pesticides accumulated in soil using GC-MS: In the extraction process
of pesticides from soil, a sample of 5 grams of air-dried and sieved soil is weighed and
placed in a plastic box, with 1 ml of water added to aid in the extraction of both polar
and non-polar insecticides. The extraction is performed using a mixture of 10 ml
hexane and 10 ml dichloromethane, which is agitated in a vibrating device for 30
minutes at 250 rpm. Following this, the mixture is centrifuged at 3500 rpm for 5
minutes to separate the filtrate from the sediment, and the filtrate is further filtered
through 0.45 micrometer filter paper (37). The organic phase is isolated by adding
chlorobenzene and centrifuging again, after which the sample is prepared for analysis
using a GC-MS device to detect residues of multi-class pesticides, while also
identifying bacterial strains that exhibit resistance to soil conditions (17, 27 and 38).
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Total bacteria in the soil: In this study, bacterial species were isolated using a
dilution method and cultured on nutrient agar plates (20), with the most active species
selected for further analysis. These selected bacteria were then cultured in a liquid broth
containing Chlorpyrifos pesticide, and after incubation, the most opaque culture was
identified using a VITEK device. Various tests, including Gram staining, movement
assessment, and catalase and oxidase tests, were conducted to characterize the bacteria,
along with tests for nitrate reduction, gelatinase activity, indole production, and sugar
fermentation to determine their metabolic capabilities (20, 41 and 45).

P. aeruginosa isolates are preserved by transferring a portion of the bacterial colony
to test tubes with slanted nutrient agar under sterile conditions, followed by incubation
at 28°C and storage at 4°C, with monthly culture renewals (21). To prepare a biological
inoculum of P. aeruginosa, pure isolates are cultured in nutrient agar medium within a
flask, inoculated with a young culture, and incubated in a shaking incubator at 28 °C
for four days to ensure proper aeration. This method ensures the viability and
maintenance of the bacterial strains for further study (23).

Experimental design: The experiment was laid out in a Randomized Complete
Block Design with 24 treatments, including control along three replicates, which were
randomized to each plot. Cultivation was done in the experimental unit form of lines
wherein three lines were drawn per experimental unit, line separation 50 cm and 25 cm
plant distance. Thence 15 plants lines in total in each, and the rate is 80,000 plants h™.

The study factors were divided into three factors. The first factor is the biofertilizer
represented by P. aeruginosa bacteria, symbolized by B, at two levels (not adding a
inoculate of P. aeruginosa BO, adding P. aeruginosa B1) by dipping the seedling in 2
ml of liquid P. aeruginosa inoculate. As for the white fungus waste, the characteristics
of which are shown in Table 5 and symbolized by Ab, it will be added at three levels,
which are (without adding AbO, 5 tons h* as a second level Ab1, 10 tons h*! as a third
level Ab2) added in one batch upon planting. The nanofertilizer symbolized by N will
also be added at four levels, which are (without adding NO, 4 kg h™* nanozinc N1, 2 kg
h™* nanoboron N2, 1 kg h'* nanoboron + 2 kg h nanozinc N3). Added in one batch
simultaneously with the addition of white fungus waste. Samples were collected from
the rhizosphere soil of the stevia sugar plant and the two genitals, i.e., after 120 days.

Estimation of the residual Chlorpyrifos pesticide using HPLC liquid
chromatography device: The residual pesticide was estimated according to the method
of (59) using the standard solution of the pesticide for qualitative detection by
comparing the retention time of the standard compound of Chlorpyrifos pesticide 8.10
minutes.

Statistical analysis of the experimental data: The measured data for the study
indicators were taken, and the results were statistically analyzed using the Genstat
program. The averages were compared according to the least significant difference
(LSD) test at a probability level of 5% (11).
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Results and Discussion

Detection of pesticide residues in the soil before the study: The chromatogram is the
detector’s response plotted against time as the column components leave the solution
(i.e., the sample compounds making up the solution). It shows many peaks; each peak
corresponds to a soil solution compound.

intensity
Chromatogram control | C:\GCMSsolution'Sample'control 1.QGD
122,480,897 g
20000000- :
15000000
0000000 %,
| #
3000000 | , i
3 $oy m i1 : i TIC*L.00
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0 0.0 200 2.0
i

Figure 1: Chromatogram in the GC-MS device for the initial soil sample.

Thus, from Table 2 R.Time and Area present the peak of each curve in Figure 1 at
the retention time of the compound R.Time and is indexed in a sequence from curve 1
to curve 5in Table 2 as seen from Figure 1 that there is an 18.300 peak which represents
the RT of this most concentrated component in position 31, and the Area % is 53.91 as
it was the highest percentage area of the compound present in the soil sample and the
sequence of this Peak was 31 (Table 2 as displayed as Fig. 2) It is culled Chlorpyrifos
or Dursban or Phosphorothioic acid or O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl)
ester.
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Table 2: Using the GC-MS device, The compounds' peak number, retention
time, and concentration in the initial soil sample.

Peak Report

Peak R.Time [I.Time F.Time Area Area% Height Height% A/H Mark Name
1 3.169 3.125 3.208 212161 0.06 74677 0.10 2.80 Ml Benzene
2 3.455 3.400 3.517 1750055 0.51 564482 0.79 3.10 M 0-Xylene
3 3.844 3.800 3.908 1301736 0.38 419557 0.59 3.10 Ml 2,2,3,3-Tetrafluoro-1-propanol
4 4.270 4.192 4.325 3878912 1.13 980658 1.38 3.87 Ml 4-Chlorobutanoic anhydride
5 4.398 4.325 4.467 36937472 10.77 6955376 9.75 5.30 MI Toluene
6 4510 4.467 4.542 15703054 4.58 6692742 9.39 2.37 M Urea
7 4.672 4.608 4.725 12543485 3.66 4740483 6.65 2.65 Ml Peroxide, dimethyl
8 4.892 4.808 4.983 38366934 11.19 7373742 10.34 5.20 Ml 3-(Bromomethyl)picolinonitrile
9 5.357 5.242 5.400 19878226 5.80 7166711 10.05 277 MI 2-Ethyl-3,5-dimethylpyridine
10 5.545 5.500 5.575 1891776 0.55 1113531 1.56 1.70 Ml Phenylalanine
11 5.708 5.675 5.717 310938 0.09 139694 0.20 1.39 Ml Propyl-2-iden-5-amino-1,2,4-
triazole
12 5.738 5.725 5.758 364654 0.11 363421 0.51 1.00 Ml 1,2-Benzenediol
13 5.807 5.775 5.825 525326 0.15 284555 0.40 1.66 Ml Hydratropic acid
14 5.849 5.825 5.875 1888264 0.55 1386264 1.94 1.39 Ml 1,3-Difluoro-2-propanol
15 5.999 5.975 6.025 256573 0.07 166690 0.23 1.54 Ml 2-Tolyloxirane
16 6.158 6.125 6.175 537909 0.16 316188 0.44 1.56 Ml 2-Chloro-N-methoxy-N-
methylacetamide
17 6.191 6.175 6.217 309482 0.09 310729 0.44 1.08 Ml alpha.-Chloroethyl
chloroformate
18 6.295 6.258 6.325 2377750 0.69 1377641 1.93 1.73 Ml 3,4-DIETHYLHEXANE-3,4-
DIOL
19 6.641 6.617 6.667 184340 0.05 118721 0.17 1.55 Ml 4-Ethylbenzoic acid
20 6.808 6.767 6.833 1083260 0.32 632517 0.89 1.70 Ml Peroxide, dimethyl
21 6.881 6.842 6.908 1900581 0.55 1141532 1.60 1.66 Ml Peroxide, dimethy
22 7.191 7.158 7.225 147348 0.04 80688 0.11 1.80 Ml 2-Propenenitrile, 3-phenyl-
23 7.401 7.342 7.433 557992 0.16 228168 0.32 2.44 Ml 2-(3-Aminopropyl)-pyridine
24 7.942 7.900 7.975 438269 0.13 235907 0.33 1.85 Ml 5-Benzylidene-3-(4-
morpholinylmethyl)-2,4-
thiazolidinedione
25 9.331 9.283 9.392 135862 0.04 52649 0.07 2.57 Ml 6-Chloro-4-mercaptobenzo-
1,2,3-triazine
26 9.658 9.617 9.692 219539 0.06 121153 0.17 1.81 Ml 1-Methyl-1-(2,2-
dimethylpropyl)oxy-1-
silacyclobutane
27 9.919 9.875 9.958 92646 0.03 49503 0.07 1.87 Ml Naphthalene
28 11402  11.333  11.467 6626337 1.93 3286834 4.61 2.02 Ml Molybdenum
29 12332 12.192 12375 5113171 1.49 1558107 2.18 3.28 Ml 2,3,5-Trichloropyridin-4-amine
30 14141  14.092 14225 1519796 0.44 583077 0.82 2.61 Ml Molybdenum,
tricarbonylchloro(.eta.5-2,4-
cyclopentadien-1-yl)-
31 18.300  18.192  18.558 184895043 53.91 22472325 3151 8.23 Ml Chlorpyrifos
32 19.624  19.508  19.708 705189 0.21 190509 0.27 3.69 Ml E,E,Z-1,3,12-Nonadecatriene-
5,14-diol
33 23185 23150 23.217 106576 0.03 59987 0.08 1.79 Ml Glutaric acid
34 24351 24308 24417 179300 0.05 73127 0.10 2.43 M i-Propyl 9-octadecenoate (Z)

342939956  100.00 71311945 100.00
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Figure 2: Peak 31, the pesticide Chloropyrifos.

The primary soil has the insecticide Chlorpyrifos at a concentration of (167 mg kg
1 s0il) most probably since this pesticide is found in many agricultural and food
products, and winged insects, immune insects, etc, attack all types of soil and plant
pests. The field site is associated with the Agricultural Research Department -
Diwaniyah Research Station and has been cultivated with consecutive barley crops
since 2008 AD. Various agricultural pesticides were used in it, including insecticides,
thin and broad weed Killers, and others. After the crisis period in 2020, there was a
water shortage crisis for three years; hence, the land was lying barren. The present
study experiment was conducted only after three years. Among the commonly and
broadly used organic pesticides for crops globally, Chloropyrifos is used at 3-15 kg h
1(52), while its half-life is 120-360 days (15).

The extensive use of Chloropyrifos in the soil has caused high-level soil
contamination with Chloropyrifos pesticide. Also, there is a high abundance of
Chlorpyrifos pesticide in the subject soil because it stays for a long while within the
soil. This pesticide negatively affects the population by killing or inhibiting certain
groups of microorganisms and increasing the numbers of some resistant and dominant
microorganisms (22 and 59).

Detection of bacteria most adapted to soil contaminated with the pesticide
Chlorpyrifos: Soil samples were taken from the greenhouse soil, supplemented with
Pseudomonas chlorpyrifos strain BAMS5 at a concentration of 10° colony-forming units
gt to the soil. It gave about approximately 26.33 x 107 (CFU g dry soil). Incubated
plates were incubated for 24-48 hours at 37 °C. After incubation, the bacteria strain
having the serial number (1) was selected based on the dense growth in the plates, and
this recorded several 13.64 x 107 (CFU g dry soil). The ideal soil to detect resistant
bacteria is one in which the species exist, and it is evident that isolated species do not
affect microbial activities elsewhere (36 and 38). The results of testing the bacterial
isolate using the VITEK system came out to be P. aeruginosa, as in Table 3; this was
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supported by the morphological examinations of the bacterial isolate under a light
microscope, where almost a single rod-shaped bacterium was observed post staining
with Gram stain in red (Gram-negative) and on nutrient culture medium exhibited a
convex with an irregular edge colonial shape that produced a yellowish-green
pyocyanin dye, Table 4. The findings from morphological and biochemical tests agreed
with what was reported by (25). The colonies were sub-inoculated onto King’s B and
incubated; they were then inoculated to test for growth on Cetrimide Agar (selective
medium for this pathogen) and Simon citrate medium by checking the color of the
medium from green to blue. All six isolates turned out positive to both oxidase and
catalase tests, motile rods negative to capsule and spore forms, aerobic, well grown on
King A and Mannitol media, and had an optimal temperature of growth range. A few
isolates had a temperature of optimum growth between 4-42°C, a key diagnostic
characteristic of a few isolates.

They were singly on rods seen under the microscope, and the stain did not produce
any similarity in staining to those in any group. These characteristics agree with the
morphological, microscopic, and biochemical characteristics of Pseudomonas spp. The
same results have been repeated in other studies, such as (58). As shown in Table 4,
the results show that the bacteria is Pseudomonas aeruginosa. They are small to
medium-sized, smooth, convex colonies. They also appear mannitol positive and
pigmented on both King B and King A media, with different colors of the pigmentation
and always a greenish pigment typical of this particular species, at 42°C. These features
are characteristic features and confirmatory tests for the species P.aeruginosa. That
also agrees with what (50) said. (T) The reason for the dense presence of P. aeruginosa
in primary soil is that this organism is ubiquitous and primarily survives in colonies in
the root area around several plants (9). Since it also does not have a reasonable
nutritional requirement, representing the nature of adaptability to most conditions, this
organism would have to thrive in most places instead of the commons's abundance in
different areas. The organism can utilize many carbon sources for energy and has fast
growth rates (56).
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Table 3: Diagnosis of bacteria using the VITEK device.

Bionumber:0043051303500240

Organism Quantity

Selected Organism: Pseudomonas aeruginosa

Card: GN Lot Number: 2412586503 Expires: 25,12,2023
Identification CST
Information Status: Final Analysis Time: 5.82 hours Completed:
27,1,2024 CDT
Organism Organ ~ VITEK 2

Selected
Organism

% Probability

Bionumber:0043051303500240

Psedomonas aeruginosa97

Analysis Organisms and Tests to Separate:

Analysis Message:

Contraindicating Typical Biopattern(S)

Psedomonas aeruginosa

URE(16),

Susceptibility Card: Lot Number: 0442809204 Expires:5,1,2025
Information AST- CDT
N419
Status: Analysis Time:  14.37 hours Completed: 27,1,2024
Final CDT
Antimicrobial MTC Interpretation Antimicrobial MTC  Interpretatio
n
Ampicillin/Sulbacta Meropenem S
m
Piperacillin/Tazoba 8 S Amekacin S
ctam
Cefotaxime Gentamicin S
Ceftazidime 2 S Ciprofloxacin 0.25 S
Ceftazidime/Avaba 2 S Tigecycline
ctam
Ceftolozane/Tazoba 0.5 S Colistin S
ctam
Cefepime 2 S Trimethoprim/
Sulfamethoxazole
Imipenem 2 S
AES Findings: Last Modified: Dec 23,2023 CST  Parameter Set: Global CLSI-
based
+Phenotypic 2023
Confidence Level: Consistent
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Table 4: Biochemical tests for P. aeruginosa bacterial inoculate.

S. Test name Culture medium Result Notes
1. Gram stain - - Single red rod (stain negative)
2. Pyocyanin dye Nutrient Agar + The presence of yellowish-green
production pyocyanin dye on the surface of
the medium
3.  Growth at 4°C Nutrient Agar - No bacterial growth because it is
unable to grow at 4°C Presence
of clear bacterial growth
4. Growth at 42°C Nutrient Agar + Change of the color of the
bacterial colony to purple
5. Oxidase - + Appearance of a clear transparent
halo around the colony
6. Hemolysin Blood Agar with 6% human + Change of the color of the
blood medium from green to blue
7. Citrate Simmon citrate s Appearance of pink color
consumption
8. Urease Christensen + Change the consistency of the
solid gelatin to the liquid state.
9. Gelatinolysis Nutrient + Appearance of red color using the
gelatine a-Naphthol indicator
10. Methyl red medium containing dextrose + Appearance of pale bacteria on
as well as K,PO; is called the medium due to their
Protease Broth.
11. Lactose MacConkey Agar MCA - inability to decompose lactose
fermentation sugar

The results of Table 5 indicate that P. aeruginosa bacteria isolated from the primary
soil were able to degrade Chlorpyrifos pesticide in solid culture media, as the highest
value of bacterial density at a concentration of 10 mg L of Chlorpyrifos pesticide after
48 hours of incubation was 27.9 x 107 (CFU g*! dry soil), while the highest
concentration of the pesticide 50 mg L during the same incubation period gave the
lowest bacterial number of 9.3 x 10’ (CFU g* dry soil). Table 5 shows that gradually
increasing the concentration of pesticides reduces the number of P. aeruginosa
bacteria.

The rapid increase in the use of insecticides is negatively related to environmental
disturbances, especially the microbial community, as the insecticide inhibits the
number of bacterial colony-forming units at high concentrations, which ranged
between 30-50 mg 1, that the aim of adding cultured microorganisms obtained from
previously contaminated sites is to have a high level of adaptation to break down
Chlorpyrifos molecules using resistant and dominant bacterial strains, which is an
important factor for enhancing soil biomass (1 and 30). (55) stated that soil loses
fertility when contaminated with complex pesticides and that bioremediation using
environmentally friendly techniques is paramount. Based on the results obtained from
Table 5, concluding that P.aeruginosa bacteria effectively decomposed Chlorpyrifos
pesticide in the laboratory. Hence, this study evaluates the bioremediation of
Chlorpyrifos pesticide using P.aeruginosa bacteria isolated locally from contaminated
soil, and P.aeruginosa bacteria was resistant over some time in this soil. Therefore, this
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bacteria was nominated for the bioremediation of Chlorpyrifos pesticide by
bioinoculation of plants grown in contaminated soil.

Table 5: The efficiency of P. aeruginosa bacteria isolated from the initial soil
sample in degrading different concentrations of Chlorpyrifos pesticide.

Pesticide concentration mg L™ Number of live bacterial cells (cfu mlI?)
10 27.9 x 107
20 24.3 x 107
30 19.4 x 107
40 11.5 x 107
50 9.3 x 107
Control 3.27 x 107

The effect of P. aeruginosa bacteria, white fungus waste, and nano fertilizer in the
soil bioremediation of the residual Chlorpyrifos pesticide: The results of the tabulated
statistical analysis (Table 6) indicated that after 120 days of application, bioinoculation
with P. aeruginosa caused a significant difference in the levels of chlorpyrifos residues
across the different treatments. Figure 3 shows that chlorpyrifos was present as residues
in the treatment BOAbONO , While the results of HPLC analysis in Figure 4 show that
there are no residues of the pesticide chloropyrifos in the soil after 120 days of
biological treatment B1Ab2N3 of HPLC analysis of soil samples about chlorpyrifos,
where it was found that no chlorpyrifos pesticide residue was reported in the soil of the
treatment bio-inoculated with B1 compared to the control that had a concentration of
4.401 mg kg soil. Due to the biodegradation process of the inoculated P. aeruginosa
bacteria and the effectiveness of the roots of the sugar bean plant, Chlorpyrifos
pesticide is lost from the soil inoculated with P. aeruginosa. These bacteria can
transform pesticide molecules so they are no longer toxic and harmless through
complete mineralization of organic pesticides or decomposition into small, nontoxic
molecules by various metabolic processes. This ends with the environment’s
purification action (33 and 57).

The treatment of adding white mushroom waste at its three levels, coded (AbO, Abl,
and Ab2), achieved a noticeable decrease in the amount of Chlorpyrifos pesticide
remaining in the soil, but it did not wholly decompose it, as it recorded 4.275, 1.908
and 0.417 mg kg soil, respectively. The reason for the decrease in the amount of
Chlorpyrifos pesticide in the soil when adding white mushroom waste is that
mushroom waste can decompose large amounts of soil pollutants, especially pesticides,
into less toxic forms or non-toxic metabolites through mineralization and
decomposition processes with the help of many oxidative enzymes, as lignocellulose
enzymes present in mushroom waste compost participate in the decomposition of
complex compounds. This activity is attributed to the increase in the amount of organic
carbon in mushroom waste and the increase in surface area, which increases the bio-
absorption process and, thus, the decomposition of polluted compounds (27, 28, 40 and
43). The Chlorpyrifos residues were traversed by statistically substantial differences in
the levels of nano-fertilizer addition at the four levels (NO, N1, N2, and N3) in the
averages. Comparatively, the lowest average residue of Chlorpyrifos pesticide was
0.815 mg kg™ soil under treatment N3 where (1 kg h™* nano-boron + 2 kg h nano zinc)
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was applied, which was higher with the highest value of 4.328 mg kg™ soil obtained
under control treatment.

The reduction of residual Chlorpyrifos pesticide is significantly enhanced by the
addition of mixed boron and nano-zinc, which activate various hydrolytic enzymes,
including urease and phosphatase. This degradation process occurs in four steps,
beginning with the conversion of Chlorpyrifos into Oxon chlorpyrifos through the
action of mixed-function oxidases. Subsequent transformations lead to the formation
of TCP and diethyl thiophosphate, ultimately resulting in the breakdown of Oxon
Chlorpyrifos into TCP via hydrolytic enzymes (5, 29 and 32).

The effect of the two-way interaction between bio-inoculation and white fungus
waste was highly significant in recording variations in Chlorpyrifos pesticide residue
values. This was confirmed by the HPLC analysis, wherein no treatment with bio-
inoculants carried Chlorpyrifos pesticide residues, whereas the AbOBO comparison
showed the highest pesticide residue of 8.550 mg kg™ soil.

This is due to the development of the bioremediation process through biostimulation
using organic fertilizers in addition to bio-inoculations such as white fungus waste,
which is a good source for the biostimulation process, as these organic wastes act as an
effective stimulating factor to enrich the biological community in the soil and increase
its activity, thus working synergistically, which helps accelerate the biological
decomposition of the pesticide in the soil (8, 13, 16 and 36).

Data in Table 6 indicated that the combined effect of bio-inoculant and nano-
fertilizer is very significant since all treatments with P. aeruginosa bacteria had no
residue of Chlorpyrifos pesticide when compared to the comparison BONO, which
recorded the highest residue of Chlorpyrifos pesticide at 8.657 mg kg soil. This is
why, post-bio-inoculant and nano-fertilizer application, Chlorpyrifos was decomposed
due to the effect of zinc and nano-boron boosting the activity of soil-borne
microorganisms as well as the inoculation of P. aeruginosa bacteria, which are mainly
involved in breaking down pesticides minus toxic metabolites (18, 31 and 33).

Contrastingly, the most satisfactory results in a binary interaction, as those obtained
after the incorporation of white mushroom waste and nano fertilizer, are denoted by
combinations N1Ab2, N2Ab2, N3Ab2, and N3Abl because the subsequent HPLC
analysis did not manifest any residue of Chlorpyrifos pesticide compared to the
reference treatment, registering the highest concentration at 9.045 mg kg* soil. This is
attributed to the complementary effect of white mushroom waste and nano fertilizer
since white mushroom waste applied to the soil right after the cultivation step under
aerobic conditions acts as an enzyme source, initiating specific reactions with zinc and
nanoboron that further enhance the mineralization of organic pollutants in the soil (34
and 49).

The triple interaction between inoculation with P. aeruginosa, white fungus waste
and nano fertilizer showed that the following treatments BOAb1N3, BOAb2N1,
BOAb2N2, BOAb2N3, B1AbONO, B1AbON1, B1AbON2, B1AbON3, B1Ab1NO,
B1Ab1IN1, B1Ab1N2, B1IAb1N3, B1Ab2NO, B1Ab2N1, B1Ab2N2, B1Ab2N3 did not
have any Chlorpyrifos residue after 120 days of adding the fertilizer compared to the
control treatment BOAbONO which recorded the highest Chlorpyrifos residue of 18.090
mg kg soil. The reason for the decomposition of the remaining Chlorpyrifos pesticide
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in the soil is due to the joint synergistic role between the three study factors, as the
addition of zinc and nano-boron led to an increase in the activity of microorganisms in
general and the activity of the added P. aeruginosa bacteria in particular, which
performs the biodegradation process as a result of restoring its biological activity in the
soil, decomposing the pesticide into quickly metabolized materials, in addition to the
role of white mushroom waste in the biostimulation of P. aeruginosa bacteria added to
the soil, which increases the rate of decomposition of the remaining Chlorpyrifos
pesticide (2, 6, 12 and 47).

Table 6: The effect of P. aeruginosa bacteria, white mushroom waste, and
nano-fertilizer in the bioremediation of Chlorpyrifos pesticide residues (mg kg
L soil) in the soil after 120 days of cultivation.

Bl BO Inoculation in P. aeruginosa (B)
0.000 4.401
0.125 LSD 0.05
Ab2 Abl AbOQ White fungus levels (tons h') (Ab)
0.417 1.908 4.275
0.153 LSD 0.05
N3 N2 N1 NO Nano fertilizer (N)
0.815 1.747 1.911 4.328 (kg N h
0.176 LSD 0.05
Bilateral interaction between inoculation with P. aeruginosa and white mushroom waste
Ab2 Abl AbO
0.835 3.817 8.550 BO
0.000 0.000 0.000 B1
0.216 LSD 0.05
Bilateral interaction between P. aeruginosa inoculation and nano fertilizer
N3 N2 N1 NO
1.630 3.493 3.822 8.657 BO
0.000 0.000 0.000 0.000 B1
0.249 LSD 0.05
dual interaction between white mushroom waste and nano fertilizer
N3 N2 N1 NO
2.445 2.578 3.032 9.045 AbO
0.000 2.662 2.702 2.270 Abl
0.000 0.000 0.000 1.670 Ab2
0.305 LSD 0.05
Triple interaction between study factors
N3 N2 N1 NO
4.890 5.157 6.063 18.090 AbO BO
0.000 5.323 5.403 4.540 Abl
0.000 0.000 0.000 3.340 Ab2
0.000 0.000 0.000 0.000 AbO B1
0.000 0.000 0.000 0.000 Abl
0.000 0.000 0.000 0.000 Ab2
0.432 LSD 0.05
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Sample Info:
Sample ID : sample 1 Amount 0
Sample : sample 1 ISTD Amount 0
Inj. Volume [mL] : 0.1 Dilution 1
Autostop : 20.00 min External Start : Start - Restart, Down
Detector 1 : Detector 3 Range 1 : Bipolar, 2000 mALU, 10 Samp. per Sec.
Subtraction Chromatogram  : (None) Matching : No Change
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Figure 3: The estimation of Chlorpyrifos pesticide using HPLC in coefficients
(BOADONO).
Sample Info:
Sample ID : sample 20 Amount [1]
Sample : sample 20 ISTD Amount 0
Inj. Volume [mL] : 0.1 Dilution 1
Autostop : 20.00 min External Start  : Start - Restart, Down
Detector 1 : Detector 3 Range 1 : Bipolar, 2000 mALU, 10 Samp. per Sec.
Subtraction Chromatogram : (None) Matching : No Change
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Figure 4: The estimation of Chlorpyrifos pesticide using HPLC in coefficients
(B1Ab2N3).
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Conclusions

It can be concluded that the triple interaction between inoculation with P.
aeruginosa bacteria, white fungus waste, and nano fertilizer, the following treatments
BOAbIN3, BOAb2N1, BOAb2N2, BOAb2N3, B1AbONO, B1AbON1, B1AbON2,
B1AbON3, B1Ab1NO, B1AbiN1, B1AbIN2, B1Ab1N3, B1Ab2NO, B1Ab2N1,
B1Ab2N2, B1Ab2N3 did not have any Chlorpyrifos pesticide remaining after 120 days
of adding the fertilizer compared to the control treatment BOAbONO, which recorded
the highest Chlorpyrifos pesticide residue of 18.090 mg kg soil. All the residues
measured in the plant and soil for all treatments are within the minimum-maximum
limits allowed according to the European Union rule for determining the maximum
limits for pesticide residues.

A combination of bacterial inoculate, white fungus waste, and nano fertilizer can be
used to eliminate pesticide residues and their toxic effects. In addition, experiments
must be conducted on using other microorganisms with pesticides for various crops in
collaboration with researchers from various agricultural specialties to reach objective
and integrated results.
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