

The Effect of Spraying Boron, Potassium, and Seaweed Extract on The Nutrient and Chlorophyll Content of Apple Tree Leaves

T. A. Kousa *

R. N. Kharbotli

A. Boessa

Dept. of Horticulture, Faculty of Agriculture, Lattakia University, Lattakia, Syria

***Correspondence to:** Tahani Abdalla Kousa, Dept. of Horticulture, Faculty of Agriculture, Lattakia University, Lattakia, Syria.

Email: Tahanikousa@gmail.com

Article info

Received: 2024-09-04

Accepted: 2025-03-20

Published: 2025-12-31

DOI-Crossref:

10.32649/ajas.2025.189124

Cite as:

Kousa, T. A., Kharbotli, R. N., and Boessa, A (2025). The Effect of Spraying Boron, Potassium, and Seaweed Extract on The Nutrient and Chlorophyll Content of Apple Tree Leaves. Anbar Journal of Agricultural Sciences, 23(2): 1053-1065.

©Authors, 2025, College of Agriculture, University of Anbar. This is an open-access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

Abstract

This study was conducted in the Kassab area in Lattakia to examine the effect of spraying apple trees with marine algae extract, potassium, and boron. It dealt with eight factors: spraying with potassium (0.5%), boron (0.2%), marine algae extract, mixing potassium and boron, potassium and algae, algae, potassium, and boron, and with water only. The complete randomized design was used covering 24 trees with each transaction having 3 trees with one repeater tree. Averages were compared by the GenStat program and the lowest moral extent. The leaf content of nutrients and chlorophyll was significantly affected. The findings showed an increase in the ratios of nitrogen-phosphorus-potassium-calcium-magnesium-boron and total chlorophyll in the leaves. The nitrogen content of the leaves increased significantly by 2.447% when sprayed with marine algae extract for an average of two years compared to 1.63%. The marine algae extract treatment offered the highest phosphorous at 2.447%. The treatment with boron, potassium and marine algae outperformed the others for the two years at 1.203% and 1.293%, respectively. The boron treatment gave a significant effect over the others at 0.551%. The interaction between boron, potassium and marine algae showed remarkable improvement over the rest with the boron content in the leaves reaching 46.21 pm. For leaf chlorophyll content, the mixing treatment of potassium and boron outweighed the rest

at 2.22 mg/g compared to the 1.29 mg/g for the control and exceeded that for marine algae extract of 2.30 mg/g while the control had 1.41 mg/kg. Total chlorophyll content for the boron and potassium was highest at 4.25 mg/g compared to the control (2.70 mg/g).

Keywords: Foliar application, Leaves, Minerals, Chlorophyll, Apples.

تأثير الرش الورقي لأشجار التفاح بالبورون والبوتاسيوم ومستخلص الطحالب البحرية في محتوى الأوراق من العناصر الغذائية والكلوروفيل

تهاني عبدالله كوسا *

رشيد نديم خربوتي

عبدالعزيز بوعيسى

قسم البساتين، كلية الزراعة، جامعة اللاذقية، اللاذقية، سوريا

*المراسلة الى: تهاني عبدالله كوسا، قسم البساتين، كلية الزراعة، جامعة اللاذقية، اللاذقية، سوريا.

البريد الإلكتروني: Tahanikousa@gmail.com

الخلاصة

تم إجراء هذا البحث في منطقة كسب بمحافظة اللاذقية على أشجار التفاح من صنف (Golden Delicious) (Golden Delicious) بهدف دراسة تأثير التغذية الورقية ببعض العناصر الغذائية على محتوى أوراق أشجار التفاح من النتروجين، الفوسفور، البوتاسيوم، الكالسيوم، المغنيزيوم، البورون، إضافة للكلوروفيل a, b والكلوروفيل الكلي. وتضمن البحث الرش بالبوتاسيوم والبورون ومستخلص الطحالب البحرية (Algi firt top) بشكل مفرد أو مزيج مع بعضها. أدى الرش بهذه المواد إلى تفوق المعاملات المدروسة مقارنة بالشاهد، النتروجين: فقد زادت النسبة لمحتوى الأوراق من النتروجين معنوياً ووصل إلى 2.447% عند الرش بمستخلص الطحالب البحرية بالنسبة لمتوسط العامين مقارنة بالشاهد (1.630) %، الفوسفور: أعطت معاملة مستخلص الطحالب البحرية أعلى محتوى للأوراق من للفوسفور (2.447) %، البوتاسيوم: فقد تفوقت معاملة المزج بين البورون والبوتاسيوم والطحالب البحرية على بقية المعاملات بالنسبة لمتوسط العامين ووصل إلى 1.203 %، 1.293 % بالترتيب، المغنيزيوم: لقد أعطت معاملة البورون تأثيراً معنوياً مقارنة بباقي المعاملات حيث أعطت 0.551 %، البورون: أظهرت معاملة الخلط بين البورون والبوتاسيوم والطحالب البحرية تحسناً ملحوظاً مقارنة مع باقي المعاملات حيث وصل محتوى الأوراق من البورون إلى 46.21 ppm. وبخصوص محتوى الأوراق من الكلوروفيل: الكلوروفيل a تفوقت معاملة المزج بين البوتاسيوم والبورون على سائر المعاملات حيث بلغت 2.22 ملخ/غ مقارنة بالشاهد الذي كان 1.29 ملخ/غ، أما الكلوروفيل b: تفوقت معاملة مستخلص الطحالب البحرية، حيث بلغ محتوى الأوراق 2.30 ملخ/غ بينما في الشاهد 1.41 ملخ/كغ والكلوروفيل الكلي كانت معاملة البورون والبوتاسيوم هي الأفضل، حيث بلغ 4.25 ملخ/غ مقارنة مع الشاهد الذي كان 2.70 ملخ/غ.

كلمات مفتاحية: التغذية الورقية، الأوراق، المعادن، الكلوروفيل، التفاح.

Introduction

As perennial trees, apples need balanced nutrition to grow and achieve high production and high quality fruits. Apple composting systems should consider the age, production, weight, and quality of trees. Fruit quality relies heavily on multiple factors such as nutrition and resistance to diseases (16).

Good nutrient management is essential to maximize production, especially in fruit trees (27). The addition of chemical fertilizer in arbitrary amounts may be more than the plant needs and these elements wash into groundwater creating pollution (17). Hence, the importance of foliar paper spraying as a way to meet the nutrient needs of trees, as well as environmentally friendly and safe, with the correct doses of these elements targeted directly to the leaves or fruits, and in limited quantity (9).

Tree production can decrease as a result of a lack of any nutrient and the application of certain elements such as boron or potassium and calcium is closely related to the quality of fruits (30). Paper fertilizers containing large amounts of micronutrients are usually complementary to soil application and are used to quickly address nutrient deficiencies.

The leaf analysis technique is well-known for determining the nutritional status of apple trees (32). The nutrient accumulation curve in apple trees is a reliable indicator of the nutrient requirements at each stage of the plant's growth. As such, analysis of mineral leaf content is necessary to determine the adequacy, excess, or shortage of nutrients in the plant (30).

Potassium is an essential nutrient that has an important role in plant growth and increased productivity, and is considered to be a known element at all stages of the plant's life as it participates in all the physiological and biochemical processes in the plant (photosynthesis, breathing, plucking, etc.) (13 and 24). The need for potassium in fruit trees increases as they enter the fruit phase and potassium fertilizer rates applied in the orchard must be increased according to the plant's needs.

Boron is a micronutrient that plays an important role in the growth and development of the plant, the increase of flowers, and pollen plants, the ratio of fruit sets and production (1). It has an important role in several processes in plant life including cell division, hormone transfer, and diabetes transmission (25). A deficiency of boron reduces tree and vegetable growth as well as fertility and pollen germination thus affecting the content and quality of fruits (18).

Marine algae extracts are organic sources used in agricultural production and are complementary to, and not substitutes for, fertilizer (28). They contain major and micronutrients and more than a group of growth-inducing substances, such as auxins, auxin-like substances, vitamins, amino acids and organic acids, and multiple sugars that affect the plant's vital activities as well as betaine, which is a source of nitrogen (20).

The primary objective of this research was to determine the effect of paper spraying potassium, boron, and marine algae extract on the nutrient and chlorophyll content of apple tree leaves.

Materials and Methods

The research was conducted over 2021-2022 in the Kassab area of Lattakia governorate at an altitude of 900 meters above sea level which is characterized by a moderate climate, low moisture, and low alkaline lumine soils rich in organic materials.

The study involved 15-year-old trees of the Golden Delicious apple variety inlaid to the original M.M106 and cultivated in 5 * 5 m plots. The research was carried out according to the randomized complete block design (RCBD) with 8 treatments each containing 3 repeats making a total of 24 trees. The treatments were as follows:

1. Control: trees sprayed with only plain water.
2. Potassium spraying: trees were sprayed with a 2.5g/l potassium sulfate solution.
3. Boron spraying: Trees were sprayed with 2g concentrated boric acid solution equivalent to 340ppm.
4. Marine algae extract spraying: Trees were sprayed with marine algae extract (Algi First Top) at a 0.5 g/l concentration
5. Spraying with a mixture of potassium and boron: 2.5g/l + 340pm.
6. Spraying with a mixture of potassium and marine algae extract: 2.5g/potassium + 0.5g/liter.
7. Spraying with a mixture of boron and marine algae extract: 340ppm + 0.5g/l.
8. Spraying with a mixture of potassium, boron and marine algae extract: 2.5g/l + 340ppm + 0.5g/l.

The trees were sprayed three times during the growing season when they needed the nutrients during their growth cycle. The first was in the red turbocharge phase (27/3), the second after the decade (3/5), and the third a month after the second sprinkler (3/6). Each spraying session involved 5 l of the spray solution.

Indicators:

1. Paper analysis: In the second week of July each year, 25 fully developed papers were collected from each tree and fruitless branches at a rate of 90-100 for the sample of each transaction for analysis of the content of the leaves for the N- P - K -Ca - Mg-B nutrients.
2. Paper content of chlorophyll was conducted with a Spectro photometer optical spectrum device at the wavelength of 644, 663 millimeter micron.

Chlorophyll was estimated in one gram of fresh leaf samples according to the following equations:

$$\text{Chlorophyll A} = 1.07 * \text{OD at 663} - 0.094 * \text{OD at 644 mg/g.}$$

$$\text{Chlorophyll B} = 1.7 * \text{OD at 644} - 0.28 * \text{ODAT 663 mg/g.}$$

ODD represents the optical density in light wave at lengths of 663, 644 Nm.

Results and Discussion

Content of nitrogen in leaves: Table 1 shows treatments T4, T7, T8, and T3 outperforming the others, with the lowest value in the control (T1) of 1.590% in the first year. This was repeated in the second year with T1 recording 1.670%. In terms of average for the two years, treatments T4 at 2.447% and T7 at 2.390% outperformed the rest, while the control recorded the lowest value at 1.630%.

Table 1: Effect of foliar fertilization with nutrients and seaweed extract on nitrogen content in leaves.

Transaction No	Treatment	Leaf Nitrogen Content (%)		
		2021	2022	Two-year average
T1	Control	1.590 b	1.670 b	1.630 c
T2	K	2.003 ab	2.033 ab	2.018b
T3	B	2.267 a	2.190 a	2.228 ab
T4	SW	2.433 a	2.460 a	2.447a
T5	B+K	2.140 a	2.100 ab	2.120 ab
T6	Sw+K	2.090 ab	1.983 ab	2.037 b
T7	Sw+B	2.350 a	2.430a	2.390 a
T8	Sw+B+K	2.200a	2.280 a	2.240 ab

*Similar characters within the single column indicate no significant differences between them.

Phosphorous content in leaves: As seen in Table 2, treatment T4 at 0.250% outperformed the others in year 1 followed by T8, T5, and T3 at 0.240, 0.233, and 0.233%, respectively with the lowest of 0.190% in the T1 control. In the second year, treatments T4 and T8 (0.250 and 0.250%) outperformed the rest with the control having the lowest value at 0.180%). The average for both years were in the T4 and T8 treatments which outperformed the others at 0.250 and 0.245%, respectively, while the control T1 had the lowest value of 0.185%.

Table 2: Effect of foliar fertilization with nutrients and seaweed extract on phosphorous content in leaves.

Transaction No	Treatment	Leaf Phosphorous Content (%)		
		2021	2022	Two-year average
T1	Control	0.190 c	0.180 d	0.185 c
T2	K	0.210 bc	0.220bc	0.215 b
T3	B	0.233 ab	0.233ab	0.233ab
T4	SW	0.250a	0.250a	0.250 a
T5	B+K	0.233ab	0.233ab	0.233ab
T6	Sw+K	0.190c	0.200cd	0.195 c
T7	Sw+B	0.210bc	0.220bc	0.215 b
T8	Sw+B+K	0.240ab	0.250 a	0.245 a

* Note similar characters within the single column indicate no significant differences between them.

Potassium content in leaves: Table 3 shows that treatment T8 (1.200%) outperformed the others in the first year followed by T2 and T4 (1.030 and 1.003%), respectively, while in the second year T8 (1.213%) led followed by T2 (1.050%), with the lowest value being for T1 (0.930%). As for the two-year average, treatment T8 at 1.207% outperformed the others followed by T2 (1.040%), while the control recorded the lowest value at 0.925%).

Table 3: Effect of foliar fertilization with nutrients and seaweed extract on potassium content in leaves.

Transaction No	Treatment	Leaf Potassium Content (%)		
		2021	2022	Two-year average
T1	Control	0.920c	0.930d	0.925e
T2	K	.030 b1	1.050b	1.040 b
T3	B	0.960 bc	0.963cd	0.962cde
T4	SW	1.003 b	1.01bc	1.007 bc
T5	B+K	0.990bc	0.993bc	0.991cd
T6	Sw+K	0.990bc	0.980cd	0.985cd
T7	Sw+B	0.953bc	0.963cd	0.958 de
T8	Sw+B+K	1.200a	1.213 a	1.207a

* Note similar characters within the single column indicate no significant differences between them.

Calcium content in leaves: Table 4 shows that treatment T8 (2.015%) outperformed the others followed by T4 (2.100%) with T1 (1.570%) registering the lowest value in the first year. Treatments T8 (2.240%) and T4 (2.200%) outperformed the others in year 2 while the lowest value was for the control (1.600%). The highest averages for the two years were for treatments T8 (2.128%) and T4 (2.150%) and the lowest in the control (1.585%).

Table 4: Effect of foliar fertilization with nutrients and seaweed extract on calcium content in leaves.

Transaction No	Treatment	Leaf Calcium Content (%)		
		2021	2022	Two-year average
T1	Control	1.570e	1.600e	1.585e
T2	K	1.880d	1.992d	.1.936d
T3	B	2.040bc	1.993c	2.017c
T4	SW	2.100ab	2.200a	2.150a
T5	B+K	1.903 d	1.983 c	1.943dc
T6	Sw+K	1.870d	1.933cd	1.902d
T7	Sw+B	2.013 c	2.130b	2.072b
T8	Sw+B+K	2.015a	2.240a	2.128a

* Note similar characters within the single column indicate no significant differences between them.

Leaf magnesium content: Table 5 shows that treatments T5 (0.550%) and T3 (0.550%) led the others although there were no significant differences between the treatments, except for the control which had the lowest value (0.480%) in the first year. In the second year, treatments T8 (0.553%) and T3 (0.553%) outperformed the others while the highest average value for both years was for T3 (0.551%), significantly outperforming the others. The lowest value was for treatment T1 (0.490%).

Table 5: Effect of foliar fertilization with nutrients and seaweed extract on magnesium content in leaves.

Transaction No	Treatment	Leaf Magnesium Content (%)		
		2021	2022	Two-year average
T1	Control	0.480b	0.500b	0.490b
T2	K	0.523ab	0.510ab	0.516ab
T3	B	0.550a	0.553a	0.551a
T4	SW	0.530ab	0.500b	0.515ab
T5	B+K	0.550a	0.530ab	0.540ab
T6	Sw+K	0.496ab	0.523ab	0.509ab
T7	Sw+B	0.496ab	0.500b	0.498b
T8	Sw+B+K	0.503ab	0.553a	0.528ab

* Note similar characters within the single column indicate no significant differences between them.

Content of boron in leaves: Table 6 shows that for year 1, treatment T8 (46.10%) outperformed others. Clear significant differences were seen between the treatments, while the lowest value was for T1 (34.90%). In year 2, the highest value was for T8 (46.32%) and the lowest in the control (35.42%). For the two-year average, T8 at 46.12% outperformed the other treatments.

Table 6: Effect of foliar fertilization with nutrients and seaweed extract on boron content in leaves.

Transaction No	Treatment	Leaf Boron Content (%)		
		2021	2022	Two-year average
T1	Control	34.90 g	35.42g	35.16i
T2	K	37.61 f	37.92 f	37.77 g
T3	B	41.91c	42.35 c	42.13 c
T4	SW	44.12b	44.01b	44.07b
T5	B+K	41.00d	41.12d	41.06d
T6	Sw+K	38.12e	38.40e	38.26e
T7	Sw+B	38.01e	37.97f	37.99 f
T8	Sw+B+K	46.10a	46.32a	46.21a

* Note similar characters within the single column indicate no significant differences between them.

The average nitrogen content in leaves for the control over the two years was low at 1.63% and in some treatments reached normal position.

Paper spraying with algae increased the ratio of nitrogen, phosphorus, potassium, and magnesium in leaves (6). This increase may be due to the nutrient content in marine algae, especially nitrogen, phosphorus and potassium, as well as micro-elements which are quickly absorbed by leaf-spraying as well as the algae's ability to increase nitrogen absorption efficiency (19). These results are consistent with (4) on apricots and (5) on olives where marine algae produced the highest nitrogen and potassium content in the leaves, respectively. (22) added that the spraying of marine algae extract regardless of its type increased the ratio of nitrogen, phosphorus, and iron in leaves.

The use of potassium sulfate (2%) led to a significant increase in potassium and nitrogen ratios, but had no effect on those of phosphorus and calcium, while having a limited effect on boron compared to the control (21). This may be attributed to the role of potassium in stimulating enzymes to manufacture protein and amino acids. (26) noted that spraying mango trees with various forms of potassium had a positive effect on the mineral content of the leaves. The application of potassium sulfate and potassium chloride also increased the nitrogen, phosphorus, and potassium content in apple-tree leaves. (11) found that boron spraying had a clear effect on improving the nutritional status of the cherry tree. Note (8).

The application of boric acid increased phosphorus and calcium content in the leaves but found (10) low potassium content with the application of boron. Boron application increased the nitrogen, phosphorus, calcium, and magnesium content in apple leaves but not potassium (29). (12) also reported that paper spraying of boron on olive trees had a positive impact on the content of potassium, phosphorus, nitrogen, zinc, and boron in the leaves.

Leaf content of chlorophyll A: Table 7 shows that the T5 treatment results at 2.21 mg/g outperformed the other treatments with a clear significant difference between them in the first year. This was replicated in year 2 with T5 producing 2.24 mg/g, and the control recording the lowest value at 1.24 mg/g. In terms of the two-year average, T5 (2.22 mg/g) significantly outperformed the other treatments, and the control registering the lowest value at 1.29 mg/g.

Table 7: Effect of foliar fertilization with nutrients and seaweed extract on chlorophyll A content in leaves.

Transaction No	Treatment	Chlorophyll A (mg/g)		
		2021	2022	Two-year average
T1	Control	1.34h	1.24h	1.29h
T2	K	1.38f	1.34f	1.36f
T3	B	1.89c	2.01c	1.95c
T4	SW	1.69e	1.76e	1.72e
T5	B+K	2.21a	2.24a	2.22a
T6	Sw+K	1.71d	1.88d	1.79d
T7	Sw+B	1.36h	1.26g	1.31g
T8	Sw+B+K	1.96b	2.03b	1.99b

* Note similar characters within the single column indicate no significant differences between them.

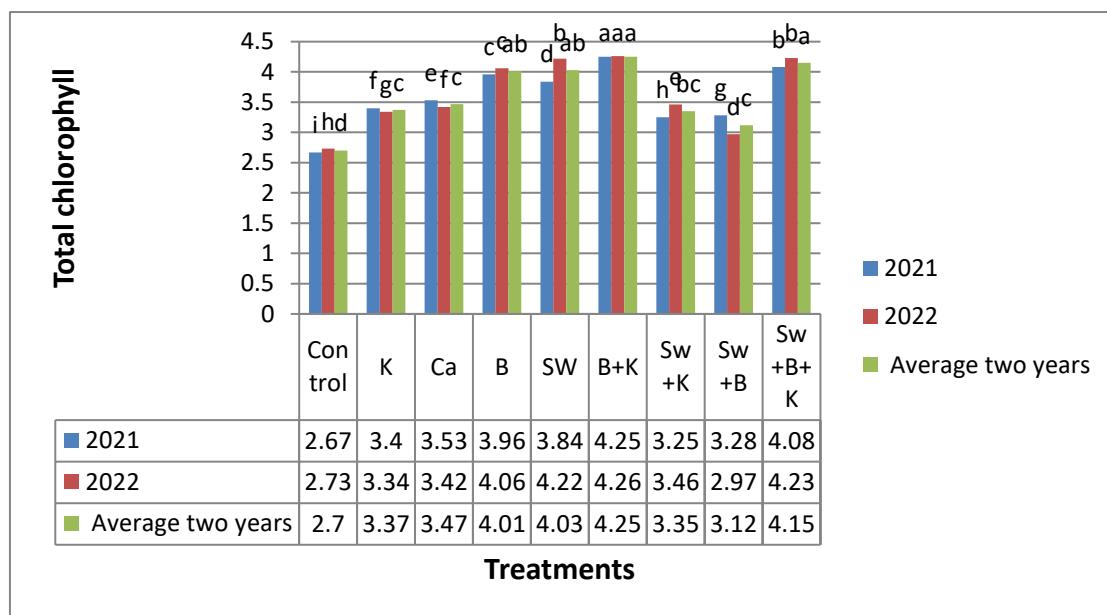

Paper content of chlorophyll B: Table 8 indicates that the 2.15 mg/g output in the T4 treatment exceeded the others in the first year, with the lowest value for the control (1.33 mg/g). It also outperformed the other treatments, at 2.46 mg/g, in the second year. The two-year averages recorded significant differences between treatments with T4 (2.30 mg/g) outperforming the others, and the control recording the lowest values at 1.41 mg/g.

Table 8: Effect of foliar fertilization with nutrients and seaweed extract on chlorophyll B content in leaves.

Transaction No	Treatment	Chlorophyll B (mg/g)		
		2021	2022	Two-year average
T1	Control	1.33h	1.49f	1.41g
T2	K	2.02c	2.00c	2.01d
T3	B	2.07c	2.05c	2.06c
T4	SW	2.15a	2.46a	2.30a
T5	B+K	2.04d	2.02c	2.03cd
T6	Sw+K	1.54g	1.58e	1.56f
T7	Sw+B	1.92f	1.71d	1.81e
T8	Sw+B+K	2.12b	2.20b	2.16b

* Note similar characters within the single column indicates no significant differences between them.

Leaf content of total chlorophyll: Figure 1 shows the superiority of treatment T5 (4.25 mg/g) and the significant differences between treatments. The lowest values were in treatment T1 (2.67 mg/g) in year 1, while in the second year, the highest values were in treatment T5 (4.26 mg/g) and the lowest in T1 (2.73 mg/g). The average for the two years shows T5 (4.25 mg/g) and T8 (4.15 mg/g) outperforming the others, with the lowest value in the control treatment (2.70 mg/g).

Figure 1: Different treatments and total leaf chlorophyll content.

Marine algae extracts contain nutrients that increase the plant's metabolic activities. They include potassium which is essential for activating enzymes for the manufacture of amino acids and protein, as well as aid in manufacturing the chlorophyll required for photosynthesis. They also increase the amount of carbohydrates produced in leaves of trees that tend to fruit, thereby increasing productivity (20).

Marine algae activate the photosynthesis process and increase the chlorophyll content in the leaves. They also increase leaf area and enhance the efficiency of the photosynthesis process (2) as well as inhibit chlorophyll degradation due to the

enzymes in them (7). Marine algae extracts contain cytokinins have an important role in delaying the aging of leaves by reducing chlorophyll degradation. As stated by (31) applying algae extract to leaves increases cell membrane permeability and improves the ability of plants to absorb mineral elements, such as nitrogen and phosphorus directly associated with chlorophyll formation in plant leaves. (22) noted that spraying the Golden Delicious apple trees with marine algae extract increased the chlorophyll content in the leaves, similar to that for Ibrahim apple leaves (14).

The increase in leaf chlorophyll content can be attributed to the high micronutrient content found in marine algae extract. Nitrogen has an important role in the formation of chlorophyll, with 70% of it in the leaves contributing to the process leading to improved photosynthesis rates (3). Potassium helps increase various physiological processes, including the manufacture of chlorophyll (23) while boron improves the health of leaves and the absorption of other nutrients (15). It also reported that the application of boric acid at 0.05% to Valencia orange trees improved leaf areas and their content of chlorophyll A, chlorophyll B, and total chlorophyll. The paper application of boron to olive trees was effective in improving the level of chlorophyll in leaves (12).

Conclusions

The mixed use of potassium, boron, and marine algae extract on Golden Delicious apple trees had a positive effect on the content of nutrients and chlorophyll in the leaves. It is recommended to paper spray the trees with a combination of concentrated potassium (2.5g/liter), boron concentration (340ppm), and concentrated marine algae extract (0.5g/liter). This should be done thrice during the growing season, at the appropriate stages for the needs of the trees for the different nutrients (red turbot stage, nodal stage, higher than the Rovil leaf in the decade).

Supplementary Materials:

No Supplementary Materials.

Author Contributions:

Author 1: review and editing. The authors have read and approved the published version.

Funding:

This research received no external funding.

Institutional Review Board Statement:

The study was conducted according to the plan drawn up by the supervisor and what was approved by the Scientific Committee in the Scientific Department.

Informed Consent Statement:

Not applicable.

Data Availability Statement:

Data available upon request.

Conflicts of Interest:

The authors declare no conflict of interest.

Acknowledgments:

The researchers thank the supervisors for the assistance provided throughout the research period. Our gratitude also to the Chairman and the faculty members of the Horticulture Department.

Disclaimer/Journal's Note:

The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of AJAS and/or the editor(s). AJAS and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

References

1. Abdel-Sattar, M., and Hammad, S. E. (2022). Eco-friendly management of citrus nematode (*Tylenchulus semipenetrans*) using ozone, copper sulphate and calcium sulphate and its impact on productivity of lemon trees. *Horticulture, Environment, and Biotechnology*, 63(6): 779-792. <https://doi.org/10.1007/s13580-022-00446-2>.
2. Al-Ealayawi, Z. A., and Al-Dulaimy, A. F. (2023). Marine algae and applications to plant nutrition: A review. *IOP Conference Series: Earth and Environmental Science*, 1158(2023): 042004. DOI: 10.1088/1755-1315/1158/4/042004.
3. Al-Ealayawi, Z. A., and Al-Dulaimy, A. F. Z. (2023). The impact of spraying marine algae extract, arginine, and brassinolide on vegetative growth traits of Albion Strawberry saplings. *IOP Conference Series: Earth and Environmental Science*, 1262(4): 042061. DOI: 10.1088/1755-1315/1262/4/042061.
4. Al-Hadethi, M. E. A. (2015). Effect of different fertilization sources and the growth regulator (Brassinosteroids) on growth and yield of apricot trees. PhD. Thesis, College of Agriculture, University of Baghdad.
5. Al-Hadethi, M. E. A., and Al-Dulaimi, A. S. T. (2019). Effect of foliar application of potassium and sea weed extracts on growth of olive transplants. International Scientific Conference for Agricultural Sciences. Kirkuk University, 310-315.
6. Al-Marsoumi, F. S., and Al-Hadethi, M. E. A. (2020). Effect of humic acid and seaweed extract spray in leaf mineral content of mango Seedlings. *Plant Archives*, 20(1): 827-830.
7. Blunden, G., Jenkins, T., and Liu, Y. W. (1996). Enhanced leaf chlorophyll levels in plants treated with seaweed extract. *Journal of applied phycology*, 8(6): 535-543. <https://doi.org/10.1007/BF02186333>.
8. Dhar, R. P. (1987). Cold storage behavior of Starking Delicious apple in relation to pre and post-harvest treatments. PhD. Thesis, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh.
9. Fernandez V., and Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. *Critical Reviews in Plant Sciences*, 28 (1-2): 36-68. <https://doi.org/10.1080/07352680902743069>.
10. Ganai, N. A. (2006). Effect of pre-harvest calcium and boron application on the quality and yield of apple (*Malus*domestica* borkh). Cv Red Delicious under

temperate conditions of Kashmir. PhD Thesis, Sher-e Kashmir University of agricultural Sciences and Technology of Kashmir, Jammu and Kashmir.

11. Hanson, E. J. (1991). Sour cherry trees respond to foliar boron applications. *HortScience*, 26(9): 1142-1145. <https://doi.org/10.21273/HORTSCI.26.9.1142>.
12. Harhash, M. M., Nasr Alla, W. M. E., and Mosa, W. F. A. (2022). Response of "Kalllmata" olive cultivar to foliar application of moringa extract, boron, and zinc. *Egyptian Academic Journal of Biological Sciences, H. Botany*, 13(2): 171-178. <https://doi.org/10.21608/eaajbsh.2022.275939>.
13. Hou, W., Tränkner, M., Lu, J., Yan, J., Huang, S., Ren, T., ... and Li, X. (2019). Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. *BMC plant biology*, 19(1): 302. <https://doi.org/10.1186/s12870-019-1894-8>.
14. Hussien, M. H., and Hamad, R. M. (2025). Effect of micronutrient nanoparticles injection and seaweed extract application on some vegetative, chemical characteristics, and yield of apple tree cv. Ibrahim. *Anbar Journal of Agriculture Sciences*, 23(1): 755-769. <https://doi.org/10.32649/ajas.2025.186769>.
15. Ibrahim, H. I. M., and Al-Wasfy, M. M. (2014). The promotive impact of using silicon and selenium with potassium and boron on fruiting of Valencia orange trees grown under Minia region conditions. *World Rural Observations*, 6(2): 28-36.
16. Kader, S. A., Spalevic, V., and Dudic, B. (2024). Feasibility study for estimating optimal substrate parameters for sustainable green roof in Sri Lanka. *Environment, Development and Sustainability*, 26(1)" 2507-2533. <https://doi.org/10.1007/s10668-022-02837-y>.
17. Kunicki, E., Grabowska, A., Sekara, A., and Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (*Spinacia oleracea* L.). *Folia Horticulturae*, 22(2): 9-13. DOI: 10.2478/fhort-2013-0153.
18. Marschner, P. (1995). Mineral nutrition of higher plants. Second Edition. San Diego: Academic Press, 379-396.
19. Martin, J. (2012). Impact of marine extracts applications on cv. Syrah grape (*Vitis vinifera* L.) Yield components, harvest juice quality parameters, and nutrient uptake. MSc. Thesis, Faculty of California Polytechnic State University, San Luis Obispo.
20. Morales-Payan, J. P., and Norrie, J. (2010). Accelerating the growth of Avocado (*persea Americana*) in the nursery using a soil applied, commercial extract of the brown alga *Ascophyllum nodosum*. *International Sea-weed Symposium*, 189.
21. Mosa, W. F. A. E., El-Megeed, N. A. A., and Paszt, L. S. (2015). The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of Anna'apple trees. *Journal of Experimental Agriculture International*, 8(4): 224-234. <https://doi.org/10.9734/AJEA/2015/16716>.
22. Mousavi, S. M., Jafari, A., and Shirmardi, M. (2024). The effect of seaweed foliar application on yield and quality of apple cv. 'Golden Delicious'. *Scientia Horticulturae*, 323: 112529. <https://doi.org/10.1016/j.scienta.2023.112529>.

23. Murad, H. J., and Al-Dulaimy, A. F. Z. (2021). Response of date palms cv. Zahdi to foliar spray with urea and seaweed extract. In IOP Conference Series: Earth and Environmental Science, 761(1): 012052. DOI:10.1088/1755-1315/761/1/012052.

24. Nieves-Cordonnes, M., Al Shibblawi, F. R., and Sentenac, H. (2016). Roles and transport of sodium and potassium in plants. Metal Ions in Life Sciences, 16: 291- 324. <https://doi.org/10.1007/978-3-319-21756-7>.

25. Singh, R., Sharma, R. R., and Tyagi, S. K. (2007). Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry (*Fragaria × ananassa* Duch.). Scientia horticulturae, 112(2): 215-220. <https://doi.org/10.1016/j.scienta.2006.12.019>.

26. Taha, R. A., Hassan, H. S. A., and Shaaban, E. A. (2014). Effect of different potassium fertilizer forms on yield, fruit quality and leaf mineral content of Zebda mango trees. Middle-East Journal of Scientific Research, 21(1): 123-129. DOI: 10.5829/idosi.mejsr.2014.21.03.21483.

27. Tanou, G., Ziogas, V., and Molassiotis, A. (2017). Foliar nutrition, biostimulants and prime-like dynamics in fruit tree physiology: new insights on an old topic. Frontiers in plant science, 8: 75. <https://doi.org/10.3389/fpls.2017.00075>.

28. Verkleij, F. N. (1992). Seaweed extracts in agriculture and horticulture: a review. Biological Agriculture and Horticulture, 8(4): 309-324. <https://doi.org/10.1080/01448765.1992.9754608>.

29. Wojcik, P., Wojcik, M., and Klamkowski, K. (2008). Response of apple trees to boron fertilization under conditions of low soil boron availability. Scientia horticulturae, 116(1): 58-64. <https://doi.org/10.1016/j.scienta.2007.10.032>.

30. Zargar, M., Tumanyan, A., Ivanenko, E., Dronik, A., Tyutyuma, N., and Pakina, E. (2019). Impact of foliar fertilization on apple and pear trees in reconciling productivity and alleviation of environmental concerns under arid conditions. Communicative and Integrative Biology, 12(1): 1-9. <https://doi.org/10.1080/19420889.2019.1565252>.

31. Zhang, X., and Ervin, E. H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop science, 44(5): 1737-1745. <https://doi.org/10.2135/cropsci2004.1737>.

32. Zhu, Z. L., and Chen, D. L. (2002). Nitrogen fertilizer use in China—Contributions to food production, impacts on the environment and best management strategies. Nutrient cycling in agroecosystems, 63(2): 117-127. <https://doi.org/10.1023/A:1021107026067>.