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 المستخلص

تعدددددب ت دردددددلح ارةدددددلح رئيدددددعرر  غيردددددعر  رجويدددددول  ثددددددش تعودددددع ر   دددددل  رئ   ددددد   ئ دددددل تددددد  وع غرلردددددع ثددددددش 

رئتخطددددددوئ رئروتددددددل  رئت ثودددددد  رئعلغدددددد ر ةددددددل ذدددددددا رئبرريدددددد   تدددددد  غ لر دددددد   ددددددو    دددددد    ر  يددددددبرر رئخطددددددل 

، رئدددددددح تدددددد  تتدددددد و     ددددددد رئتعوددددددع  kink رئ تعددددددبا رئت دوددددددبح    دددددد    ر  يددددددبرر رئ  ي ددددددل رئ عدددددد  

ل ةددددددل تدددددد  وع رئع   دددددد  ث ددددددب  ددددددب غعددددددو  ةددددددل ر ثترلر ر دددددددح   ول ددددددلح رئط دددددد  رئ   عدددددد  غدددددد  رئ وكددددددد

ئتيدوددددف ةو ودددد  تدددد  وع رئع   دددد ، رئرخددددلر،  ٢٠٢٤إئددددش  ٢٠٠٥رئعددددعرل  ددددة  رئ تددددع  غدددد  - رئيدددددو ل و  

 ددددددبرح رئبرريدددددد   تطرودددددد    دددددد    ر  يددددددبرر   رت ددددددلا رئع ددددددلت ثدددددددش رت لذددددددلح ارةددددددلح رئيددددددعرر ر 

رةددددد  رئيدددددعرر  ة تعودددددع تدددددل مر   يدددددرع رئتعودددددعرح رئ دي  ددددد  ةدددددل رئعة ددددد  ئ  دةددددد  ا رئخطدددددل رئعدددددلاح

 دددددو  رئع   ددددد   ارةددددد  رئيدددددعرر ، تددددد  إا دددددل    ددددد    ر  يدددددبرر رئ  ي دددددل  ئت دددددل  ذددددددر رئتيددددد     دددددكف 

رةثددددع ةعلئودددد ر ر  يددددبرر رئكو كددددل ذدددد  ريددددد ا إ تددددلجل  تيددددتخبا ئت ددددب ع رئ  ددددل   رئتددددل  تعو ددددع ةو ددددل غوددددف 

ث ددددددب   طدددددد  ثتردددددد  غعو  دددددد  بغعع ةدددددد  ر   وددددددع غعع ةدددددد  ،  يودددددد   تيددددددب  غددددددل رئعة دددددد   ددددددو  رئ تعو ددددددعرح 

ثدددددة   ثددددددش  ئددددده، ر  دددددع ذددددددر رئددددد     . تعدددددع'  ددددد' فر  كيدددددلرف ةدددددل رئ ودددددف ا   ر  طدددددل  ةدددددل رئعة ددددد 

رئ  ي دددددددل، رئددددددددح  يدددددددتخبا ر  يدددددددبرر رئخطدددددددل رئ  طعدددددددل، تييددددددد  ل ةدددددددل رار  رئ  ددددددد   ر ثددددددددش  ةددددددد  

 ،    دددددلاح  دددددو  غعلغدددددف رئتيب دددددب(MSE)رئتع وعدددددل  رئختددددد ل،   ئددددده  ت دودددددف  و ددددد  رئ ت يدددددئ رئخطددددد 

(R²)  غعلغددددف رئتيب ددددب رئ عددددب   (Adjusted R²) غ ددددل  ددددب  ثدددددش تييددددو  رئت رةدددد  غددددم رئرول ددددلح ،

   دددددلا  غ    وددددد  رئت رددددديرحر  وددددد   ردددددو  ذددددددا رئ تدددددلج  ثددددددش ةعلئوددددد  ريدددددتخبرا رئ  دددددل   رئ عت دددددب  ثددددددش 

ئ  ددددد    ر  يدددددبرر رئ  ي دددددل ةدددددل رئك ددددد  ثددددد   رئيدددددب ا ةدددددل رئبرريدددددلح رئروتوددددد   تردددددع  رئ و ددددد  رئ  دددددلة 

 رئعة لح رئ وكدو  رئخ و  ض   رئرول لح رئ  ل و ر
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Comparative Parameter Estimation in Weather Modeling Using 

Kink Regression and Ordinary Least Squares Methods 

 
 
 

 

Abstract 

Temperature fluctuations are a key indicator of changing weather 

patterns and have a direct impact on environmental planning and 

public awareness. This study utilizes historical weather data collected 

from Sulaymani, Iraq, covering the period from 2005 to 2024, to 

analyze how humidity, vapor, and wind direction influence 

temperature trends. Additionally, the analysis is based on a 

comparison between the traditional multiple linear regression model 

and an enhanced kink regression model, designed to account for a 

structural shift in the effect of humidity at a specific threshold. The 

study initially applies Ordinary Least Squares multiple regression to 

model temperature as the dependent variable. However, due to 

observable changes in the relationship between humidity and 

temperature, a kink model is introduced to capture this shift more 

effectively. Kink regression is a statistical method used to estimate 

models where the relationship between variables changes slope at a 

known or unknown threshold point, creating a “kink” rather than a 

discontinuity. Moreover, this kink approach, which utilizes piecewise 

linear regression, revealed improved model performance. Specifically, 

the mean square error (MSE) decreased, and both the R² and adjusted 

R² increased, indicating a better fit and more reliable predictions. 

These findings validate the use of threshold-based models in 

environmental studies and highlight the added value of kink 

regression in uncovering hidden structural relationships within 

climatic data. 

Keywords: Multiple Regression, King Regression Model, OLS Estimation, Piecewise 

Regression. 
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Introduction 

Regression is the statistical technique used for estimating a dependent 

variable (response) from more than one independent variables (predictors). 

Additionally, the crucial purpose of regression analysis is prediction and 

causal inference. Estimating the dependent variable with a given set of 

independent variables is known as prediction. While causal inference 

explains the relationship between a dependent variable and one or more 

independent variables. Regression analysis is applicable across a wide range 

of disciplines, including econometrics, healthcare, marketing, finance, 

engineering, weather …etc. [10] [19] [24]  

Linear function or parametric functional form is one of the most traditional 

regression models, which applies continuous relationships among variables. 

Linear Regression model is one of the most fundamental and widely used in 

statistical methods for estimating the relationship between a single 

dependent variable and one or more independent variables that observed data 

can be fitted by a linear equation line. It indicates that a single linear line 

represents the best fit through the data points, explaining how changes in 

independent variables lead to change in the dependent variable. [21] [25] 

Regression assumptions is crucial step in the regression analysis that ensure 

the validity and relaibility of the model results. These assumptions like 

linearity, independence of errors, homoscedasticity, normality of errors, and 

no multicollinearity. Having these assumptions lead to get an accurate 

coefficient estimates and valid statistical inferences. Other than that, vice 

versa. [13] [17]  

While real world experiences expand the need for data, collecting a vast 

amount of data is challenging, especially when trying to apply all 
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assumptions without violating them. That is where complex model of 

regression can face these challenges such as non-linear, quasi-experiment, 

and multiple regression etc... In the case, if linear regression fails to capture 

the true pattern model. This is where quasi-experiment provides an 

alternative method for handling approach such as, Regression Discontinuity 

Design or Regression Kink Design. [4] [18]    

Regression Kink Design is a quasi-experiment used to indicate and identify 

the relationship between one dependent variable and one of more 

independent variables based on on a cetrain point which is known as 

threshold. Regression Kink Design is similar to Regression Discontinuity 

Design. Regression Discontinuity Design relies on abrubt jumps in the 

outcome variable to identify casual effects at the threshold or cutoff. 

Meanwhile, Regression Kink Design apply a kink point at the threshold 

rather than a jump. [2] [6] [7] 

Material and Methods: 

2.1 Regression model: [31] [10] [28] [30] 

2.1.1 Simple Linear Regression 

Simple linear regression is one of the simplest statistical methods used to 

determine the effect of one predictor on outcome, these two variables assume 

have a linear correlation line. The line is determined by minimizing the sum 

of squared errors between the observed values and the predicted values. [8] 

[12] [19] 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜺𝒊                        (1) 

𝑌𝑖:  is the outcome variable. 

𝛽0: is the intercept (the value of Y when is 𝑥1 is 0). 

𝛽1: is the slope (the change in Y for a one-unit increase in 𝑥1). 

https://doi.org/10.36325/ghjec.v21i4.19651.
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Figure 1. This graph explains simple linear regression between one 

 dependent variable and one independent variable. 

 

𝑥1: is the independent variable (the predictor). 

𝜀𝑖: it represents the error term 𝑖𝑡ℎ observations. 

 
 

 
 

 

 

 
 

 
 

2.1.1 Multiple Linear Regression 

This regression is an extension form of simple linear regression that is used 

to identify and estimate and determine the value of a dependent variable 

based on one or multiple independent variables. Furthermore, it explains how 

multiple independent variables collectively effect on a dependent variable. 

Unlike simple regression. Each independent variable’s coefficient shows its 

impact while controlling for others. This method helps indicate more 

complex situations where multiple factors influence one outcome. [1] [19] 

[27]  

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜷𝒏𝒙𝒎 + 𝜺𝒊                         (2) 

Where: 

𝑌𝑖 ∶ is the dependent variable (the outcome we are trying to predict) for the 

𝑖𝑡ℎ observation. 

𝑥1, 𝑥2…, 𝑥𝑚 ∶ are the independent variables (the predictors) for the 𝑖𝑡ℎ 

observation. 
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𝛽0: is the intercept of the regression line, representing the value of 𝑌𝑖 when 

all the X’s are zero. 

𝛽1, 𝛽2…, 𝛽𝑛 ∶ are the coefficients that represent the change in the dependent 

variable. Each 𝛽𝑖 represents the change in 𝑌𝑖 for a one-unit increase in the 

respective 𝑥𝑖, holding all other variables constant. 

𝜀𝑖 ∶ The error term for the 𝑖𝑡ℎ observation, which accounts for the variability 

in 𝑌𝑖 that cannot be explained by the linear relationship with the independent 

variables.   

 

2.2 Regression Model Assumptions 

Regression assumptions are the foundational conditions that verify both 

reliability and the validity of a regression model's results. These assumptions 

are key to guaranteeing that estimated coefficients are unbiased, consistent, 

and efficient. In the meantime, any violation of these assumptions will lead 

to an incorrect conclusion. Essentially, they establish the basis that 

guarantees the accuracy and relevance of regression analysis, reducing errors 

that may distort the relationships among variables: [13] [17] [21]  

2.2.1 Linearity 

The linearity assumption in regression analysis states that The model 

assumes a linear relationship, meaning that any variation in the independent 

variables should lead to proportional changes in the dependent variable. The 

assumption ensures that the model can accurately capture the relationship 

between variables using a straight line or hyperplane. Violating this 

assumption can lead to biased estimates and incorrect conclusions. It is 

essential to verify linearity before fitting a regression model to ensure 

reliable results. [13] [22] 

https://doi.org/10.36325/ghjec.v21i4.19651.
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A scatter plot of residuals can reveal linearity. If the residuals are randomly 

scattered with no pattern, the relationship is linear. A curved or systematic 

pattern in the residuals suggests a non-linear relationship. 

 

Hypothesis Test: 

𝐻0: The relationship is linear. 

𝐻1: The relationship is non-linear. 

2.2.2 Constant Error Variance (Homoscedasticity) 

Homoscedasticity is another assumption that shows the variance of the 

residuals (errors) is constant across all levels of the independent variables. 

This means that the spread of the residuals should remain the same 

throughout the range of fitted values. Violating this assumption (i.e., 

heteroscedasticity) can lead to inefficient estimates and biased statistical 

tests. It is important to check for homoscedasticity to ensure the model's 

reliability. [17] [30]  

One of the most common methods to detect heteroscedasticity is Breusch-

Pagan test heteroscedasticity by testing whether the variance of the residuals 

is constant across all levels of the independent variables. 

LM = n.𝑅2                           (3) 

LM: Lagrange Multiplier statistic (Breusch-Pagan test statistic). 

n: number of observations. 

𝑅2: coefficient of determination from the auxiliary regression of 𝜀𝑖 on the      

independent variables. 

Hypothesis Test: 

𝐻0: Homoscedasticity included into data set. 

𝐻1: Heteroscedasticity included into data set. 

https://doi.org/10.36325/ghjec.v21i4.19651.
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2.2.3 Independent of Error Term 

The independence of error terms assumption in regression analysis indicates 

that the residuals (errors) of the model should be independent of each other. 

This means that the value of the error term for one observation should not 

provide any information about the value of the error term for another 

observation. In other words, there should be no autocorrelation among the 

errors. The Durbin-Watson test is used to detect autocorrelation in the 

residuals of a regression model. [13]  

The Durbin-Watson test is used to detect autocorrelation in the residuals of 

a regression model, specifically focusing on first-order autocorrelation. A 

value close to 2 suggests no autocorrelation, while values significantly below 

or above 2 indicate positive or negative autocorrelation, respectively. [1] 

DW = 
𝛴𝑡=2

𝑛 (𝑒𝑡−𝑒𝑡−1)2

∑ ⅇ2𝑡𝑛
𝑡=1

                         (4) 

𝑒𝑡 = residual (error term) at time t. 

n = number of observations. 

Hypothesis Test: 

𝐻0: Autocorrelation has not affected the data. 

𝐻1: Autocorrelation has affected the data. 

 

2.2.4 Normal Error 

Normal Error is a crucial property all over assumptions. This assumption 

explains regression analysis states that the residuals (errors) of the model 

should be normally distributed. Normality ensures that the statistical 

significance of the model's parameters can be accurately assessed. [30]  

To indicated normality Kolmogorov-Smirnov (K-S) test is one of most 

usable tests to detect normality. 
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  𝐷𝑛 = sup
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)|                         (5) 

  𝐷𝑛: K-S statistic 

        𝐹𝑛(𝑥): empirical distribution function (EDF) of the sample 

  𝐹(𝑥):  cumulative distribution function (CDF) of the reference 

distribution (e.g.,         normal) 

sup
𝑥

: supremum (maximum) value of the absolute differences over all x. 

Hypothesis Test: 

𝐻0: Errors are normally distributed. 

𝐻1: Errors are not normally distributed. 

 

2.2.5 No Multi-Collinearity 

No multicollinearity is a common assumption in multiple regression analysis 

that the independent variables should not be highly correlated with each 

other. When independent variables are highly correlated, it becomes difficult 

to determine the individual effect of each variable on the dependent variable, 

leading to unstable coefficient estimates and inflated standard errors. This 

can make statistical tests unreliable, resulting in biased or misleading results. 

Multicollinearity is often assessed using the Variance Inflation Factor (VIF), 

where a VIF value greater than 10 typically indicates problematic 

multicollinearity. [29] 

 VIF𝑗 =
1

1−𝑅𝑗
2                                   (6) 

VIF𝑗: Variance Inflation Factor for predictor j. 

𝑅𝑗
2The coefficient of determination (R-squared) when the 𝑗𝑡ℎ predictor is 

regressed on all the other predictors in the model. 
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Hypothesis Test: 

𝐻0: Multicollinearity is not existed. 

𝐻1: Multicollinearity is existed.     

2.3 Regression Kink Design 

First appearance of Regression Kink Design was laid at the very late of 2015 

in the field of econometric by David S. Lee and Thomas Lemieux. 

Regression Kink Design is known as quasi-experiment that determine and 

estimate the casual effect between regression variables that based on a 

cetrain point which is known as threshold. Regression Kink Design apply a 

kink point at the specific point where threshold is appear to identify the 

behaviour of data. [3] [7] [16]  

𝑌𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑛𝑥𝑛𝑖 + 𝛽𝑛+1(𝑥1𝑖 − 𝑥∗)𝐷𝑖 + 𝜀𝑖                 (7) 

𝒀𝒊 ∶ is the dependent variable for the 𝑖𝑡ℎobservation. 

𝜷𝟎 ∶ The intercept term. 

𝒙𝟏𝒊, 𝒙𝟐𝒊, … , 𝒙𝒏𝒊 ∶ The independent variables (predictors) for the 𝑖𝑡ℎ 

observation 

𝜷𝟏, 𝜷𝟐, … , 𝜷𝒏: The coefficients for the independent variables, representing 

the effect of each independent variable on 𝑌𝑖 . 

𝒙∗ ∶ The threshold or cutoff point 

𝑫𝒊 ∶ A binary indicator variable (dummy variable) where 𝐷𝑖 = 0 when 𝑥1𝑖 ≤

 𝑥∗ and 𝐷𝑖 = 1 when 𝑥1𝑖 ≥  𝑥∗. This variable is used to trigger the threshold 

effect. 

𝜷𝒏+𝟏 ∶ The coefficient for the interaction term (𝑥1𝑖 − 𝑥∗)𝐷𝑖, capturing the 

change in the relationship between 𝑥1 and 𝑌𝑖 once 𝑥1 exceeds the threshold 

𝑥∗. 

𝜺𝒊 ∶ The error term, which captures the residuals (unexplained variance). 
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2.4 Regression Kink Assumption 

Regression Kink Design relies on some key assumptions to ensure validity 

causal inference. These assumptions include the continuity of the outcome 

at the threshold, absence of manipulation in the running variable, and proper 

model specification. In other hand, violations each one of these assumptions 

may show bias the estimated kink effect and lead to incorrect conclusions. 

[6] [14] 

2.4.1 Continuity of Potential Outcomes at the Threshold  

This assumption continuity at threshold point is key function that requires 

the outcome variable would follow a smooth trend around the threshold if 

there were no treatment. Furthermore, it explains that any observed value 

change in the slope at the threshold is due to the treatment effect, not a jump 

in the outcome level. [6] [14] 

𝑙𝑖𝑚
𝑋→𝐶−

𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑋] = 𝑙𝑖𝑚
𝑋→𝐶+

𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑋]                         (8) 

This formula states that the expected outcome without treatment is 

continuous at the threshold from both sides (left and right). It ensures that 

any observed change in the slope at the kink point is due to the treatment, 

not a jump in the outcome level. 

2.4.2 No Sorting or Manipulation of the Running Variable  

No Manipulation of the Running Variable is a crucial assumption in all other. 

Eventually, means individuals cannot precisely control the running variable 

(e.g., income) to position themselves around the threshold. If manipulation 

exists, it may bias the estimation by introducing selection effects. [6] [14] 

𝑙𝑖𝑚
𝑥→𝐶−

𝑓𝑥(𝑥) = 𝑙𝑖𝑚
𝑥→𝐶+

𝑓𝑥(𝑥)                                    (9) 
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This formula means the distribution of the running variable should be smooth 

at the threshold — no sudden jump in values. It ensures there’s no 

manipulation or bunching of observations just above or below the kink point. 

2.5 Piecewise Regression Model  

The piecewise regression model is a statistical approach used to identify 

shifts in relationships that occur at certain predefined points within the data 

that often referred to "Cut-Off" or "Thresholds. Piecewise regression 

provides more accurate representation of non-linear relationship that exhibits 

different trends or behaviors before and after a specific threshold. This 

approach offers a better fit by accounting for changes in the relationship 

among variables. Unlike standard linear regression, which assumes a single 

linear relationship through all data, piecewise regression divides the data into 

segments and fits separate linear models to each segment. This method is 

particularly useful when the relationship between the independent and 

dependent variables is not constant but changes at specific values of the 

independent variable which is called threshold. By introducing these 

threshold, piecewise regression provides a more accurate representation of 

data with varying trends, such as in economics, environmental studies, and 

other fields where the relationship shifts across different ranges. [20] [26] 

2.6 Ordinary Least Square Estimation  

In parametric statistics, the researcher utilizes a sample statistic as an 

approximation of the population parameter. Estimate is the value that taken 

from the sample size which explains the population’s true value. Moreover, 

estimation is the value of a sample statistic that provides information about 

the population parameter. There are some important properties of 

estimations that leads the sample statistic to be an accurate and stable 
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estimate of the population parameter. Unbiased, consistent, efficient, and 

sufficient are the most important of behavior of each estimate. Additionally, 

If the data satisfies all the regression assumptions, it implies that the data is 

unbiased, consistent, efficient, and sufficient. This allows us to apply one of 

the most reliable estimation methods. [5] [15]  

Ordinary Least Squares is a statistical technique for estimating the 

coefficients of a linear regression model by minimizing the total of the 

squared differences between observed and predicted values, which are the 

differences between observed and predicted values. Ordinary Least Squares 

assumes that the errors are independently and identically distributed with a 

mean of zero and constant variance. It provides the best linear unbiased 

estimators (BLUE) under the Gauss-Markov theorem, ensuring that the 

estimates are unbiased and have the smallest possible variance among all 

linear estimators. Ordinary Least Squares is optimal when the model meets 

its underlying assumptions. 

𝐵̂ = (𝑥𝑇𝑥)−1𝑥𝑇𝑦                              (10) 

In OLS regression, 𝐵̂ represents the vector of estimated coefficients, which 

includes both the intercept and the slope. X is the matrix of independent 

variables, with a column of 1s added for the intercept, while y is the vector 

of observed dependent variable values. 

2.7 Analysis Of Variance (ANOVA) 

ANOVA is a statistical technique used to compare the amount of variation 

explained by a model to the variation left unexplained. Additionally, it tests 

whether different variables in a model explain significant variation in the 

outcome. It evaluates whether the model’s predictors improve the fit 

significantly more than chance, using F-statistics. Moreover, the total 
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variance is split into model sum of squares and error sum of squares. Mean 

Squared Error (MSE) is the average of the error sum of squares per degree 

of freedom and reflects the variance not explained by the model. MSE 

explains how much error, on average, remains unexplained by the model. [9] 

[23]  

2.8 The Wald Test 

The Wald test is a statistical procedure used to determine whether a notable 

change occurs in the relationship between two variables at a particular point, 

known as the threshold. In kink regression, it helps determine if the slope of 

the relationship changes before and after the threshold. The test compares 

the slopes on either side of the threshold and checks if they are different. A 

significant result means the relationship between the variables changes at the 

threshold. This helps identify important shifts or changes in patterns within 

the data. [16] 

    W =    
(𝐵̂−𝐵𝑜)2

var(𝐵̂)
~𝑥1

2                                                      (11) 

The Wald test statistic, W, compares the estimated coefficient 𝐵̂ to a 

hypothesized value 𝐵𝑜 under the null hypothesis. And Walt follows chi-

squared distribution with 1 degree of freedom. 

Hypothesis Test: 

𝐻0: There is no kink (slopes are equal on both sides). 

𝐻1: There is a kink (slopes differ). 

Result and Discussions 

3.1 Describe of data:  

In this research, weather data from Sulaymaniyah spanning from 2005 to 

2024 has been analyzed, focusing on key environmental factors. The data 

was obtained from reliable sources which include very detailed data. The 
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study focuses on examining the effect of 3 factors that affect temperature. 

Moreover, various statistical methods such as python and R programming 

can be used to analyze this data. The temperature was used as the response 

variable 𝑦, while humidity 𝑥1, vapor 𝑥2, and wind direction 𝑥3 were included 

as explanatory variables. This data provided valuable insights into how these 

factors have influenced temperature trends over the given period. 

3.2 Appling Multiple Linear Regression 

𝑦̂𝑖 = 1.492662089𝑒−15 −  0.6947𝑥̂1 + 0.3656𝑥̂2 + 0.0401𝑥3   depending 

on equation (2)  

The equation explains that, the temperature decreases by 0.6947 units for 

every single unit increase in humidity, and increases by 0.3656 units for 

every single unit increase in vapor, lastly increases by 0.0401 units for every 

single unit increase in wind direction. 

3.3 Testing All Regression Assumption 

3.3.1 Linearity  

The Residuals plot is one of the most common ways to identify whether the 

data is following linearity or not. If the residuals appear to be randomly 

distributed around zero without any obvious pattern, it indicates that the 

assumption of linearity is likely valid the assumption holds true. In other 

hand, if the plot shows any systematic pattern or curvature, it indicates this 

may suggest that the connection between the dependent and independent 

variables is potentially non-linear.  
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Figure 2. This graph does not appear any clear pattern or curve, and mostly around 

zero, the data indicates linearity. 
 

 

3.3.2 All Other Assumptions: 

Table 1. This test shows all regression assumptions result and detecting 

Test Detection Result P-Value 

Breusch-Pagan Constant Error Variance constant variance holds 0.7454 

Durbin-Watson Independent of Error Term No Autocorrelation 1.8145 

Kolmogorov-

Smirnov 
Normal Error The data is normal 0.1129 

VIF for X1 
 

Multi-Collinearity 

No Multi-Collinearity 1.771024 

VIF for X2 No Multi-Collinearity 1.743538 

VIF for X3 No Multi-Collinearity 1.316737 
 

The table present key diagnostic tests for examining the assumptions of 

multiple linear regression are included in Table. The Breusch-Pagan test has 

a p-value of 0.7454, which means that homoscedasticity is also satisfied 

since there is no heteroscedasticity in the residuals. The Durbin- Watson 

statistic of 1.8145 indicates no autocorrelation in the residuals, validating the 

assumptions of the errors independence. Also, the p-value of the 

Kolmogorov-Smirnov test for normality is 0.1129, thus also the residuals 

are normally distributed. The Variance Inflation Factor (VIF) values for the 

independent variables (𝑥1, 𝑥2, and 𝑥3) are, likewise, 1.77, 1.74, and 1.31, 

respectively—all less than the typical cut-off value of 10—suggesting no 

multicolinearity. Combined, these diagnostics demonstrate that the 

regression model meets the fundamental statistical assumptions necessary 

for the accuracy of the model's estimates and inferences. 

Table 2. This Table Explains OLS Estimation before applying kink 

model. 
 𝑅2 Adj. 𝑅2 F-Test Log-Likelihood 

OLS 0.973 0.973 2812 92.991 
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This table provides the OLS model's performance before kink regression. 

The model has demonstrated good fit with an R2 and adjusted R2 equal to 

0.973, a very high F-statistic of 2812 which means joint significance and a 

log-likelihood of 92.991 indicating good model adequacy. 

3.4 Stepwise Regression 

Stepwise regression is a statistical approach used to identify and retain the 

most important variables within a regression model. Furthermore, by adding 

or removing predictors based on specific criteria, such as the p-value or AIC 

(Akaike Information Criterion).  

Table 3. This Table Explains Stepwise regression to detect if the 

variables are having effect on the morel or not 

 coefficient standard error t P>|t| 0.025 0.975 

Const 5.239e-16 0.011 4.89e-14 1.000 -0.021 0.021 

Humidity -0.6947 0.014 -48.760 0.000 -0.723 -0.667 

Vapor 0.3656 0.014 25.942 0.000 0.338 0.393 

Wind 

Direction 
0.0401 0.012 3.291 0.001 0.016 0.064 

 

In the stepwise regression output, Avg Humidity, Avg Vapor, and Wind 

Direction are statistically significant with p-values less than 0.05, indicating 

they affect the model. The constant term is not significant (p-value = 1.000) 

and likely doesn't contribute meaningfully to the model. 

3.5 Analysis Of Variance (ANOVA) 

Analysis of Variance is a statistical technique used to compare the variation 

explained by a model with the unexplained variation. It is used to assess 

whether different variables in a model significantly influence the outcome. 

ANOVA helps determine if the predictors improve the model’s fit compared 

to chance. 
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Table 4. This Table shows ANOVA before applying kink model. 

Source Of 

Variance 

Degree of 

freedom 

Sum Of 

Square 

Mean Sum 

Of Square 
F-value P-value 

Humidity 1 64.182 64.182 2377.58 0.000 

Vapor 1 18.167 18.167 672.98 0.000 

Direction 1 0.292 0.292 10.83 0.001 

Regression 3 227.764 75.9214 2812.48 0.000 

Residual 231 6.236 0.0270 - - 

 

This ANOVA is a measure of the relative contribution of the predictors prior 

to applying the kink model. Then humidity has the greatest contribution to 

the model, with an F-value of 2377.58, followed by vapor (672.98) and 

direction (10.83), being all statistically significant (p < 0.01). The whole 

model is highly significant (F = 2812.48, p = 0.000), which means that the 

model is strong. The residual sum of squares (6.236) is low, indicating a good 

model fit with small unexplained variance. 

3.6 Regression Kink Assumptions: 

Table 5. This table shows the test of kink model assumptions with 

detections 

Test Detection Result P-Value 

Wald Test To Test If There Is Kink There Is Kink 0.000 

Placebo Test If The Kink Point at 

threshold is Significant 

The Kink Point at 

threshold is Significant 

0.0501 

 

 

To validate the presence of a structural change in the model, both the Wald 

and Placebo tests were conducted. Results confirm a statistically significant 

kink point at the estimated threshold. 

3.7 Kink Regression Model: 

Kink Regression model is one of the most advance models that recently 

developed. This model can be used to estimate relationship between 

variables based on a certain threshold to ensure if the data can sudden change 
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Figure 3. This explains the threshold at -0.29 and separate the left linear line 

from the right linear line in order to see whether kink can apply or not. 

at that threshold and detect the effect of the threshold and show the level of 

changes. The best way to create a regression model based on a threshold is 

piecewise regression. Piecewise Regression is also known as segmented 

regression. This model of regression is designed to fit different linear models 

to different segments of the data from right and left threshold. Piecewise 

Regression is preferred to determine the relationships between a dependent 

and an independent variable based on a change based on a certain point called 

threshold while all regression assumptions are met. 

𝑦̂𝑖 = −0.2627 −  0.9667𝑥̂1 + 0.1574𝑥̂2 + 0.3141𝑥̂1𝑥̂2 + 0.3637𝑥̂3 +

0.3637𝑥̂3 + 0.0405𝑥̂4     based on equation (7) we can estimate parametes. 

The model estimates that before the humidity threshold of −0.26, 

temperature drops sharply (−0.97 units per humidity unit). After the 

threshold, this effect weakens to −0.57, with a small jump in level (+0.16). 

Vapor significantly increases temperature (+0.36 per unit), and wind 

direction has a smaller positive effect (+0.04). The intercept (−0.26) reflects 

baseline temperature when all inputs are zero. 
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Table 6. This Table Explains piecewise regression to identify linear line 

from the left side and write side to detect kink. 

 coefficient 
standard 

error 
t P>|t| 0.025 0.975 

const -0.2627 0.051 -5.163 0.000 -0.363 -0.162 

Humidity -0.9667 0.049 -19.873 0.000 -1.063 -0.871 

Threshold 0.1574 0.056 2.832 0.005 0.048 0.267 

Kink 

Humidity 
0.3941 0.053 7.374 0.000 0.289 0.499 

Vapor 0.3637s 0.013 28.888 0.000 0.339 0.388 

 

Table 7. This Table detect the OLS estimation after apply kink on the 

model. 

 𝑅2 Adj. 𝑅2 F-Test Log-Likelihood 

OLS 0.979 0.978 2661 120.15 

 

After applying the kink model, all variables remain statistically significant 

(p < 0.01), with "Kink Humidity" showing a strong positive effect (β = 

0.3941). 

The threshold variable is also significant (p = 0.005), confirming a slope 

change at the kink point. Model fit improved with 𝑅2 = 0.979, Adjusted 𝑅2 

= 0, and a higher log-likelihood (120.15), indicating better explanatory 

power. The F-test value (2661) confirms overall model significance. 

Table 8. This Table shows ANOVA after applying kink model 

Source Of 

Variance 

Degree of 

freedom 

Sum of 

Square 

Mean Sum 

of Square 

F-value P-

value 

Humidity 1 207.569220 207.569220 9640.360143 0.000 

Above Threshold 1 0.234408 0.234408 10.886839 0.000 

Kink Humidity 1 1.274761 1.274761 59.205094 0.000 

Vapor 1 19.693303 19.693303 914.637212 0.000 

Wind Direction 1 0.297647 0.297647 13.823950 0.000 

Residual 229 4.930661 0.021531 - - 
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This ANOVA table summarizes the significance of predictors in a kink 

regression model. Humidity and Vapor exhibit the highest explanatory 

power (F-values: 9640.36 and 914.64, respectively), with all predictors 

showing statistically significant effects (P-values = 0). The residual variance 

is minimal, indicating a strong overall model fit. 

4. Conclusion And Recommendations: 

4.1 Conclusion:  

Relying upon the findings obtained from the practical component of the 

study, a number of significant conclusions can be derived, as outlined below: 

the study initially applied multiple linear regression using the OLS method 

to model the relationship between temperature (dependent variable) and 

multiple predictors, including humidity. A kink regression model was later 

introduced by applying a threshold to humidity, allowing for a piecewise 

linear structure. The results showed a notable improvement in model 

performance: Mean Squared Error (MSE) decreased, while both R² and 

Adjusted R² increased. This indicates that the kink model better captured the 

linear relationship between humidity and temperature, validating the 

decision to introduce a structural break in the predictor. Finaly, the results of 

the kink regression revealed a slope of −1.2114 before the threshold 

(Humidity ≤ −0.29) and −0.8004 after the threshold (Humidity > −0.29). The 

treatment effect, represented by the change in slope at the threshold, was 

0.4110. This shift suggests that while the relationship remains linear, the rate 

at which temperature responds to changes in humidity differs across 

humidity levels — a nuance effectively captured by the kink model. 

4.2 Recommendations: 

 Use Different Threshold and Kink Points 
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Try applying the kink model with different humidity threshold values instead 

of fixing it at −0.29. This can help find a more accurate or meaningful turning 

point in the relationship. 

 Apply Multiple Kink Points 

To better capture complex nonlinear behavior, a model with multiple kink 

points (piecewise linear segments) should be considered. This approach can 

identify more than one significant slope change, which may occur due to 

environmental thresholds or interactions between predictors. 

 Use Real Values and Robust Estimation 

Future models should utilize the original (non-standardized) units of the 

predictors to enhance interpretability and practical application. Additionally, 

incorporating robust regression techniques (e.g., Huber or M-estimators) can 

reduce the influence of outliers and improve model reliability in real-world 

data conditions. 
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