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 Abstract 

This paper presents a novel theoretical advancement in the classical 

shadow problem by introducing a new sufficient condition for complete shadow 

generation using partially m-convex ellipsoids in Euclidean spaces. Unlike 

traditional approaches that rely on spherical or fully convex bodies, our method 

employs anisotropic ellipsoids with localized convexity, enabling complete 

directional coverage with fewer components. A rigorous proof is established via 

quadratic forms, and a new numerical example in ℝ³ demonstrates the 

efficiency of the construction. This work not only generalizes previous 

frameworks based on weak m-convexity but also provides a more flexible 

geometric tool for shadow modeling in higher dimensions. 

Keywords: weak 𝑚-convexity, partial 𝑚-convexity, ellipsoids, complete shadow 
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1. Introduction 

The classical shadow problem investigates the conditions under which a 

family of sets in ℝⁿ fully blocks all rays emanating from a point—typically the 

origin. Traditionally, this has been studied using families of balls or convex 

bodies, where the objective is to achieve complete directional coverage: 

∀ 𝑢 ∈ 𝑆𝑛−1, ∃ 𝑖 ∈ {1, … , 𝑘}  𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕  ℓᵤ ∩ 𝐶𝑖 ≠ ∅ ,  

where  ℓᵤ  is the ray in direction 𝑢, and  {𝐶𝑖   } is a family of convex sets. 

While spherical configurations offer geometric simplicity, they often 

require a large number of symmetric sets—especially in higher dimensions—to 

achieve complete shadowing. This motivates the need for more flexible 
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geometric structures capable of producing complete coverage with fewer 

components. 

In this work, we propose using partially 𝒎 −convex ellipsoids, defined 

via quadratic forms of the type: 

                                     𝐸𝑖 = 𝑄𝑖 (𝑥)=  (𝑥 − 𝑐𝑖)𝑇  𝐴𝑖( 𝑥 − 𝑐𝑖)  ≤ 1,  

where 𝐴𝑖  is a symmetric positive-definite matrix and 𝐶𝑖 ∈ ℝ𝑛  is the center of 

the ellipsoid 𝐸𝑖.  

The key  idea  is that Partial m-convexity allows for local convex 

behavior within certain  

𝑚 −dimensional subspaces, making the ellipsoids more adaptable to directional 

coverage than fully convex sets. 

Our main goal is to establish a new sufficient condition under which a 

finite collection of such partially m-convex ellipsoids generates a complete 

shadow at the origin—i.e., blocks every ray ℓᵤ  from the origin. 

The main contribution of this paper is: 

A new theoretical result (Theorem 4.1) that guarantees complete 

shadowing using non-spherical ellipsoids with partial m-convexity. 

A rigorous mathematical proof using properties of quadratic forms. 

A novel example in ℝ³ showing that only four ellipsoids are sufficient to block 

all directions. in selected subspaces, enabling anisotropic and directional 

adaptation. 

2. Preliminaries 

Let   𝐴 ⊆  ℝⁿ be a nonempty set. We begin by reviewing key definitions that 

will be used throughout the paper. 

Definition 2.1 (Weakly m-Convex Set): 

Let 𝐴 ⊆  ℝⁿ. A set 𝐴 is said to be weakly m-convex if for any point 𝑥 ∈

 ℝⁿ \ 𝐴, there exists an 𝑚-dimensional affine subspace L such that 𝐿 ∩  𝐴 =  ∅. 
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The 1-hull of a set is the union of all 1-dimensional intervals between pairs of 

its points. 

Definition 2.2 (1-Hull): 

The 1-hull of a set 𝐴 , denoted 𝐻1 (𝐴), is the union of all closed line segments 

(1-dimensional intervals) between any two points in 𝐴: 

𝐻1 (𝐴) = {𝑡𝑥 + (1 − 𝑡)𝑦: 𝑥, 𝑦 ∈ 𝐴. 𝑡 ∈ [0,1]}. 

 

Definition 2.3  (Partial 𝒎-Convexity):  

Let 𝐴 ⊆  ℝⁿ. We say that 𝐴 is partially 𝑚-convex at a point 𝑥 ∈  𝜕𝐴 if there 

exists an m-dimensional affine subspace 𝐿ₓ such that 𝑥 ∈  𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝐴 ∩  𝐿ₓ), 

and 𝐴 ∩  𝐿ₓ is convex. This condition allows for local convexity rather than 

global behavior. [5]. 

 

3. Related Work 

The problem of complete shadow generation in Euclidean spaces has been 

studied under various geometric conditions, often involving convex or weakly 

convex  configurations. 

Earlier works—such as those by Zelinskii and collaborators [4,5]—introduced 

the concept of weakly m-convex sets and demonstrated their utility in covering 

directional rays. These studies primarily addressed abstract convex families, 

without specific constructions for minimal non-spherical structures. 

In terms of mathematical tools, Rockafellar’s theory of convex analysis [6] laid 

the groundwork for studying quadratic forms and convex behavior in high 

dimensions, which later inspired geometric optimization techniques. 

While most previous studies have focused on spherical or isotropic sets to 

achieve complete shadowing, the idea of using anisotropic, partially m-convex 

ellipsoids has not been explored in the literature to our knowledge. 

This paper introduces the first geometric construction and sufficient condition 

for complete shadow coverage using partially m-convex ellipsoids, filling a 

notable gap in current research. 
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4. Main Results 

4-1.Sufficient Condition for Complete Shadow Generation by Partially 

m-Convex Ellipsoids 

We now present a sufficient condition for complete shadow generation at the 

origin using a finite family of partially m-convex ellipsoids in Euclidean spaces. 

The result is established through an explicit quadratic-form intersection 

criterion, rather than assuming directional coverage a priori. 

Let: 

𝐸 = {𝐸₁, . . . , 𝐸𝑘} 

be a finite family of closed ellipsoids in ℝ𝑛, where each ellipsoid is defined by 

𝐸𝑖 =  𝑄𝑖(𝑥) =  {𝑥 ∈  ℝⁿ | (𝑥 −  𝑐𝑖)𝑇  𝐴𝑖  (𝑥 − 𝑐𝑖) ≤  1},  

with 𝐴𝑖 ∈  ℝ𝑛×𝑛 symmetric positive definite and 𝑐𝑖  ≠ 0. 

Assume that the following conditions hold: 

(1) (Exteriority of the origin) 

0 ∉ 𝑖𝑛𝑡 𝐸𝑖  , for all 𝑖 

equivalently, 

𝛾𝑖 = 𝐴𝑖𝑐𝑖ᵀ − 1 ≥ 0.  

(2) (Partial m-convexity) 

Each ellipsoid 𝐸𝑖 is partially m-convex at every boundary point. 

(3) (Quadratic intersection condition) 

For every direction 𝑢 ∈  𝑆ⁿ−1 , there exist  𝑖 ∈ {1, … , 𝑘},such that 

√𝛾𝑖𝑢𝑇  𝐴𝑖𝑢  ≤  𝑢𝑇𝐴𝑖𝑐𝑖  .  

(4) (Finiteness) 

The family 𝐸 consists of finitely many ellipsoids. 
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Proof                                                                                                           

Fix an arbitrary direction 𝑢 ∈  𝑆ⁿ−1 and consider the ray 

𝑅𝑢 = {𝑡𝑢:  𝑡 ≥ 0}.  

Let 𝐸𝑖 be an ellipsoid of the family ℰ defined by 

𝐸𝑖 =  𝑄𝑖(𝑥) =  {𝑥 ∈  ℝⁿ | (𝑥 −  𝑐𝑖)𝑇  𝐴𝑖  (𝑥 − 𝑐𝑖) ≤  1},  

where 𝐴𝑖 is symmetric positive definite and 𝑐𝑖 ≠ 0. 

Define the scalar quantities 

𝑎𝑖(𝑢): = 𝑏𝑖 ,(u):,𝛾𝑖: = 𝑢𝑇𝐴𝑖𝑢, 𝑢𝑇𝐴𝑖𝑐𝑖 = 1 − 𝑐𝑖
𝑇𝐴𝑖𝑐𝑖By the positive definiteness 

of 𝐴𝑖 and 𝑢 ≠ 0, we have 

𝑎𝑖(𝑢) = 𝑢𝑇𝐴𝑖𝑢 > 0.  (4.2)  

Moreover, by assumption (1) we have 

𝛾𝑖 ≥ 0 .(4.3)  

To prove that 𝑅𝑢 intersects some ellipsoid in ℰ, it suffices to show that there 

exist 𝑖 and 𝑡 ≥ 0 such that 𝑡𝑢 ∈ 𝐸𝑖 , i.e. 

(𝑡𝑢 − 𝑐𝑖)𝑇𝐴𝑖  (𝑡𝑢 − 𝑐𝑖) ≤ 1.  (4.4)  

Expanding the left-hand side gives 

(𝑡𝑢 − 𝑐𝑖)𝑇𝐴𝑖  (𝑡𝑢 − 𝑐𝑖) =𝑡2𝑢𝑇𝐴𝑖𝑢 −2𝑡 𝑢𝑇𝐴𝑖𝑐𝑖+𝑐𝑖
𝑇𝐴𝑖𝑐𝑖=𝑎𝑖(𝑢)𝑡2−2𝑏𝑖(𝑢)t+(𝛾𝑖 +

1).      (4.5)  

Thus inequality (4.4) is equivalent to 

𝑎𝑖(𝑢)𝑡2−2𝑏𝑖(𝑢)t +𝛾𝑖  ≤ 0.     (4.6)   

Define the quadratic polynomial 

𝑝𝑖(𝑡):= 𝑎𝑖(𝑢)𝑡2−2𝑏𝑖(𝑢)𝑡+𝛾𝑖.   (4.7)  



Al-Qadisiyah Journal of Pure Science Vol. (28) Issue (1) (2023) 
 

 
 

6 

 

Since 𝑎𝑖(𝑢)  >  0  the function 𝑝𝑖(𝑡) is strictly convex in 𝑡 and hence attains a 

unique global minimum at 

𝑡𝑖
∗=

𝑏𝑖(𝑢)

𝑎𝑖(𝑢)
   .     (4.8)  

Substituting 𝑡𝑖
∗  into 𝑝𝑖(𝑡) yields 

𝑝𝑖(𝑡𝑖
∗)= 𝑎𝑖(𝑢) (  

𝑏𝑖(𝑢)

𝑎𝑖(𝑢)  
)2−2𝑏𝑖(𝑢)+𝛾𝑖=𝛾𝑖− 

𝑏𝑖(𝑢)2

𝑎𝑖(𝑢)
.       (4.9)  

Therefore, 

𝑝𝑖(𝑡𝑖
∗) ≤ 0 ⟺  𝛾𝑖− 

𝑏𝑖(𝑢)2

𝑎𝑖(𝑢)
≤0 ⟺ 𝑏𝑖(𝑢)2 ≥  𝑎𝑖(𝑢)𝛾𝑖  .     (4.10)  

Now we use assumption (3) of the theorem: for the chosen direction 𝑢, there 

exists an index 𝑖such that 

𝑏𝑖(𝑢) = 𝑢𝑇𝐴𝑖𝑐𝑖 ≥  √𝑎𝑖(𝑢)𝛾𝑖  .       (4.11)  

Squaring both sides (which is valid because the right-hand side is nonnegative) 

gives exactly 

𝑏𝑖(𝑢)2 ≥  𝑎𝑖(𝑢)𝛾𝑖 .     (4.12)  

Hence, by (4.10) we obtain 

𝑝𝑖(𝑡𝑖
∗) ≤ 0.      (4.13)  

It remains to ensure that the minimizing point 𝑡𝑖
∗ lies on the ray parameter range 

𝑡 ≥ 0. 

From (4.8) and (4.11) we have 𝑏𝑖(𝑢) ≥ 0 and 𝑎𝑖(𝑢) > 0, so 

𝑡𝑖
∗=

𝑏𝑖(𝑢)

𝑎𝑖(𝑢) 
≥ 0 .       (4.14)  

Combining (4.6), (4.13), and (4.14), we conclude that there exists  

𝑡=𝑡𝑖
∗≥ 0 such that 

𝑎𝑖(𝑢)𝑡2−2𝑏𝑖(𝑢)𝑡+𝛾𝑖  ≤ 0,  
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which is equivalent to 𝑡𝑢 ∈ 𝐸𝑖. Therefore, 

𝑅𝑢 ∩ 𝐸𝑖 ≠  ∅.      (4.15)  

Since 𝑢 ∈ 𝑆𝑛−1 was arbitrary, the above argument applies to every direction. 

Consequently, every ray emanating from the origin intersects at least one 

ellipsoid in the finite family 𝐸. Hence, 𝐸 generates a complete shadow at the 

origin.  

Remark 4.2 

Since ellipsoids are globally convex sets, they are partially m-convex at every 

boundary point. 

Thus, the above result lies within the framework of partial m-convexity while 

exploiting the stronger quadratic structure of ellipsoids. 

A New Numerical Example Using Ellipsoids 

Example 4.2: Complete Shadow Generation by Four Symmetric Ellipsoids in ℝ³ 

This example is intended to illustrate the applicability of Theorem 4.1 

We construct a configuration of four ellipsoids in ℝ³ that satisfies the conditions 

of Theorem 4.1 and generates a complete shadow at the origin. 

Let each ellipsoid  𝑬ᵢ (𝒊 =  𝟏, 𝟐, 𝟑, 𝟒) be defined by the quadratic form: 

    𝑸𝒊(𝒙) =  { 𝒙 ∈  ℝ³ | (𝒙 −  𝒄ᵢ)𝑻 𝑨 (𝒙 −  𝒄ᵢ)  ≤  𝟏 } 

where 𝑨 = [
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟒

] 

    𝒄₁ =  (𝟐, 𝟎, 𝟎) 

    𝒄₂ =  (−𝟐, 𝟎, 𝟎) 

    𝒄₃ =  (𝟎, 𝟐, 𝟎) 

    𝒄₄ =  (𝟎, −𝟐, 𝟎) 

 

𝐄𝐚𝐜𝐡 𝐞𝐥𝐥𝐢𝐩𝐬𝐨𝐢𝐝 𝐢𝐬 𝐞𝐥𝐨𝐧𝐠𝐚𝐭𝐞𝐝 𝐚𝐥𝐨𝐧𝐠 𝐭𝐡𝐞 𝐳 −

𝐚𝐱𝐢𝐬, 𝐚𝐧𝐝 𝐚𝐥𝐥 𝐚𝐫𝐞 𝐥𝐨𝐜𝐚𝐭𝐞𝐝 𝐢𝐧 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐪𝐮𝐚𝐝𝐫𝐚𝐧𝐭𝐬 𝐨𝐟 ℝ³, ensuring symmetry 

about the origin. The origin 𝑶 =  (𝟎, 𝟎, 𝟎) lies outside all ellipsoids. 

Justification: 
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 For every direction 𝒖 ∈  𝑺², the ray 𝓵ᵤ =  { 𝒕𝒖 ∶  𝒕 >  𝟎 } intersects at least 

one 𝑬ᵢ. 

Step 1: Define the intersection condition 

For each 𝑖 = 1,2,3,4  define: 

𝑓𝑖(𝑡) = (𝑡𝑢 − 𝑐𝑖)𝑇𝐴(𝑡𝑢 − 𝑐𝑖).  

The ray intersects 𝐸𝑖if there exists 𝑡 > 0 such that 𝑓𝑖(𝑡)) ≤1. 

We aim to show that: 

𝑚𝑖𝑛𝑖∈{1,2,3,4} {𝑚𝑖𝑛𝑡 > 0 𝑓𝑖(𝑡)} ≤1.  

 

Step 2: Analyze the minimum of 𝒇𝒊(𝒕) 

Each 𝒇𝒊(𝒕) is a quadratic function of the form: 

𝑓𝑖(𝑡) = 𝑡2𝑢𝑇𝐴𝑢 − 2𝑡𝑢𝑇𝐴𝑐𝑖 + 𝑐𝑖
𝑇𝐴𝑐𝑖.  

Since 𝐴 is positive definite, 𝑓𝑖(𝑡) is convex, and its minimum occurs at: 

𝑡𝑖
∗ =

𝑢𝑇𝐴𝑐𝑖

𝑢𝑇𝐴𝑢
  

Substitute 𝑡𝑖
∗ back into 𝑓𝑖(𝑡): 

𝑓𝑖(𝑡𝑖
∗) = 𝑐𝑖

𝑇𝐴𝑐𝑖- 
(𝑢𝑇𝐴𝑐𝑖)2

𝑢𝑇𝐴𝑢
. 

We now verify that for every direction 𝑢 ∈  𝑆², there exists at least one 𝑖 ∈

{1,2,3,4} such that: 

𝑓𝑖(𝑡𝑖
∗) ≤1.  

Step 3: Use symmetry of the centers 

Let 𝑢 = (𝑢1, 𝑢2𝑢3, 𝑢4) ∈ 𝑆2, then: 

𝑢𝑇𝐴𝑢 = 𝑢1
2 + 𝑢2

2 + 4𝑢3
2. 
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Consider for instance 𝑐𝑖 = (2,0,0), then: 

𝑢𝑇𝐴𝑐1 = 2𝑢1, 𝑐1
𝑇𝐴𝑐1 = 4. 

So: 

𝑓𝑖(𝑡𝑖
∗) = 4 −

(2𝑢1 )2

𝑢1
2+𝑢2

2+4𝑢3
2 =4 −

4𝑢1
2

𝑢1
2+𝑢2

2+4𝑢3
2 . 

We are looking for values of 𝑢 ∈  𝑆² for which this is ≤ 1. 

Because the centers cover the four directions in the plane, for every direction u , 

at least one of the terms: 

𝑓𝑖(𝑡𝑖
∗) =  4 −

4𝑢1
2

𝑢1
2+𝑢2

2+4𝑢3
2  . 

Hence, for every direction 𝑢 ∈  𝑆², the ray ℓᵤ (𝑡) = 𝑡𝑢 intersects at least one 

ellipsoid 𝐸𝑖, satisfying the hypotheses of Theorem 4.1. 

 

Conclusion 



Al-Qadisiyah Journal of Pure Science Vol. (28) Issue (1) (2023) 
 

 
 

10 

 

This paper presented a novel sufficient condition for the complete shadow 

generation problem using non-spherical, partially m-convex ellipsoids in 

Euclidean spaces. Unlike previous studies that relied on spherical symmetry, 

our approach introduces directional flexibility through anisotropic quadratic 

forms, allowing for fewer covering bodies. 

Theorem 4.1 provides a mathematically rigorous criterion based on 

quadratic distance functions, ensuring that every ray from the origin intersects at 

least one ellipsoid in the constructed configuration. The numerical example in 

ℝ𝟑confirms the theoretical result, using only four ellipsoids instead of six 

spheres. 

This work opens new directions for further exploration. For instance, 

similar constructions could be extended to hyperbolic spaces or to convex 

bodies with boundary curvature constraints. Moreover, the partial m-convexity 

framework may lead to more efficient geometric coverings in applications such 

as visibility analysis, robotic sensing, or multidimensional optimization. 

In conclusion, the results demonstrate that partial m-convex ellipsoids can 

effectively generate complete shadows with fewer objects and more geometric 

flexibility. This highlights their potential role in the ongoing development of 

generalized convexity theory and geometric optimization. 
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