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Abstract

This paper presents a novel theoretical advancement in the classical
shadow problem by introducing a new sufficient condition for complete shadow
generation using partially m-convex ellipsoids in Euclidean spaces. Unlike
traditional approaches that rely on spherical or fully convex bodies, our method
employs anisotropic ellipsoids with localized convexity, enabling complete
directional coverage with fewer components. A rigorous proof is established via
quadratic forms, and a new numerical example in R*® demonstrates the
efficiency of the construction. This work not only generalizes previous
frameworks based on weak m-convexity but also provides a more flexible
geometric tool for shadow modeling in higher dimensions.
Keywords: weak m-convexity, partial m-convexity, ellipsoids, complete shadow
coverage, convex geometry, quadratic forms.

1. Introduction
The classical shadow problem investigates the conditions under which a
family of sets in R" fully blocks all rays emanating from a point—typically the
origin. Traditionally, this has been studied using families of balls or convex
bodies, where the objective is to achieve complete directional coverage:
vueS®™l3ie{l,..,k} suchthat £, NC; # 0,

where ¢, is the ray in direction u, and {C; }is a family of convex sets.

While spherical configurations offer geometric simplicity, they often
require a large number of symmetric sets—especially in higher dimensions—to
achieve complete shadowing. This motivates the need for more flexible
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geometric structures capable of producing complete coverage with fewer
components.

In this work, we propose using partially m —convex ellipsoids, defined
via quadratic forms of the type:

Ei =Q;i(x)=(x — )" Ai(x — ¢;) <1,

where A; is a symmetric positive-definite matrix and C; € R" is the center of
the ellipsoid E;.

The key 1dea is that Partial m-convexity allows for local convex
behavior within certain

m —dimensional subspaces, making the ellipsoids more adaptable to directional
coverage than fully convex sets.

Our main goal is to establish a new sufficient condition under which a
finite collection of such partially m-convex ellipsoids generates a complete
shadow at the origin—i.e., blocks every ray €, from the origin.

The main contribution of this paper is:

A new theoretical result (Theorem 4.1) that guarantees complete
shadowing using non-spherical ellipsoids with partial m-convexity.

A rigorous mathematical proof using properties of quadratic forms.

A novel example in R3 showing that only four ellipsoids are sufficient to block
all directions. in selected subspaces, enabling anisotropic and directional
adaptation.

2. Preliminaries

Let A < R" be a nonempty set. We begin by reviewing key definitions that
will be used throughout the paper.

Definition 2.1 (Weakly m-Convex Set):

Let A € R". A set A is said to be weakly m-convex if for any point x €
R"™ \ 4, there exists an m-dimensional affine subspace L suchthat L N A = 0.
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The 1-hull of a set is the union of all 1-dimensional intervals between pairs of
its points.

Definition 2.2 (1-Hull):

The 1-hull of a set A , denoted H; (A), is the union of all closed line segments
(1-dimensional intervals) between any two points in A:

H A)={tx+(1-t)y:x,y € A.t € [0,1]}.

Definition 2.3 (Partial m-Convexity):

Let A € R" We say that A is partially m-convex at a point x € 0dA if there
exists an m-dimensional affine subspace Ly such that x € closure(4 N Ly),
and A N Ly is convex. This condition allows for local convexity rather than
global behavior. [5].

3. Related Work

The problem of complete shadow generation in Euclidean spaces has been
studied under various geometric conditions, often involving convex or weakly
convex configurations.

Earlier works—such as those by Zelinskii and collaborators [4,5]—introduced
the concept of weakly m-convex sets and demonstrated their utility in covering
directional rays. These studies primarily addressed abstract convex families,
without specific constructions for minimal non-spherical structures.

In terms of mathematical tools, Rockafellar’s theory of convex analysis [6] laid
the groundwork for studying quadratic forms and convex behavior in high
dimensions, which later inspired geometric optimization techniques.

While most previous studies have focused on spherical or isotropic sets to
achieve complete shadowing, the idea of using anisotropic, partially m-convex
ellipsoids has not been explored in the literature to our knowledge.

This paper introduces the first geometric construction and sufficient condition
for complete shadow coverage using partially m-convex ellipsoids, filling a
notable gap in current research.
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4. Main Results

4-1.Sufficient Condition for Complete Shadow Generation by Partially
m-Convex Ellipsoids

We now present a sufficient condition for complete shadow generation at the
origin using a finite family of partially m-convex ellipsoids in Euclidean spaces.
The result is established through an explicit quadratic-form intersection
criterion, rather than assuming directional coverage a priori.

Let:
E={E,4...,Ex}
be a finite family of closed ellipsoids in R™, where each ellipsoid is defined by
Ei= Q(x)={x € R*"|(x — )" 4; (x — ¢;) < 1},
with A; € R™™ symmetric positive definite and ¢; # 0.
Assume that the following conditions hold:
(1) (Exteriority of the origin)
0 ¢intE;,foralli
equivalently,
vi=A4;¢T —1=0.

(2) (Partial m-convexity)
Each ellipsoid E; is partially m-convex at every boundary point.

(3) (Quadratic intersection condition)
For every direction u € S"~ 1, there exist i € {1, ..., k},such that

w/yiuT Aiu < uTAiCi .

(4) (Finiteness)
The family E consists of finitely many ellipsoids.
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Proof

Fix an arbitrary direction u € S™ ! and consider the ray
R, = {tu: t = 0}.

Let E; be an ellipsoid of the family £ defined by

Ei= Q(x)={x € R*"|(x — )" 4; (x — ¢;) < 1},

where A; is symmetric positive definite and ¢; # 0.
Define the scalar quantities

a;(w): = b;,(v),y;: = uTA;u,uTA;c; = 1 — ¢] A;c;By the positive definiteness
of A; and u # 0, we have

a;(w) =uTA;u>0. (4.2)
Moreover, by assumption (1) we have
yi = 0.(4.3)

To prove that R,, intersects some ellipsoid in &, it suffices to show that there
exist i and t = 0 such that tu € E; , i.e.

(tu—c;))TA; (tu—c¢;)<1. (4.4)
Expanding the left-hand side gives

y=t?uTA;u -2t uT A;c;+c;T A;ci=a; (w)t?=2b; (W)tH(y; +(tu — ¢;)TA; (tu — ¢;
1. (45

Thus inequality (4.4) is equivalent to
a;(W)t*=2b;(w)t+y; <0. (4.6)
Define the quadratic polynomial

Di (t) =a; (u)tz—Zbi (u) t+]/i. (47)



Al-Qadisiyah Journal of Pure Science Vol. (28) Issue (1) (2023)

Since a;(u) > 0 the function p;(t) is strictly convex in t and hence attains a
unique global minimum at

*:bi(u)
()

(4.8)

Substituting t; into p;(t) yields

pi ()= a;(w) ( M)Z_Zbi (W+yi=yi—

ai(u)

bi(u)?
ai(u)”

(4.9)

Therefore,

_ bi(u)?
ai(u)

pi(tH) <0 y; <0 < bi(w)? = ai(w)y;. (4.10)

Now we use assumption (3) of the theorem: for the chosen direction u, there
exists an index isuch that

bi(w) =uTA;c; = Jai(wy; . (4.11)

Squaring both sides (which is valid because the right-hand side is nonnegative)
gives exactly

bi(w)? = ai(wy;. (4.12)
Hence, by (4.10) we obtain
pi(t;)) <0. (4.13)

It remains to ensure that the minimizing point t; lies on the ray parameter range
t = 0.
From (4.8) and (4.11) we have bi(u) = 0 and ai(u) > 0, so

=250 (4.14)

Loaw) T
Combining (4.6), (4.13), and (4.14), we conclude that there exists
t=t;> 0 such that

a;(w)t?=2b;(u)t+y; <0,
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which is equivalent to tu € E;. Therefore,
R,NE # @ (415)

Since u € S™ ! was arbitrary, the above argument applies to every direction.
Consequently, every ray emanating from the origin intersects at least one
ellipsoid in the finite family E. Hence, E generates a complete shadow at the
origin.

Remark 4.2

Since ellipsoids are globally convex sets, they are partially m-convex at every
boundary point.

Thus, the above result lies within the framework of partial m-convexity while
exploiting the stronger quadratic structure of ellipsoids.

A New Numerical Example Using Ellipsoids
Example 4.2: Complete Shadow Generation by Four Symmetric Ellipsoids in R?
This example is intended to illustrate the applicability of Theorem 4.1
We construct a configuration of four ellipsoids in R? that satisfies the conditions
of Theorem 4.1 and generates a complete shadow at the origin.
Let each ellipsoid E; (i = 1,2,3,4) be defined by the quadratic form:

Q) ={xeR|(x-—e)Ax —¢) <1}

1 0 O]
whereA=|0 1 0
0 0 4
c: = (2,00
c, = (—2,0,0)
c; = (0,2,0)
c, = (0,-2,0)

Each ellipsoid is elongated along the z —

axis, and all are located in distinct quadrants of R3, ensuring symmetry
about the origin. The origin 0 = (0, 0, 0) lies outside all ellipsoids.
Justification:



Al-Qadisiyah Journal of Pure Science Vol. (28) Issue (1) (2023)

For every direction u € S* theray £, = {tu: t > 0} intersects at least
one E;.

Step 1: Define the intersection condition

Foreachi = 1,2,3,4 define:

fi®) = (tu — c)"A(tu — ).

The ray intersects E;if there exists t > 0 such that f;(t)) <I.

We aim to show that:

Min;eqy 3,4 {Ming 5 o fi (£)} <1.

Step 2: Analyze the minimum of f;(t)

Each f;(t) is a quadratic function of the form:
fi(®) = t?uTAu — 2tuT Ac; + ¢;T Ac;.

Since A is positive definite, f;(t) is convex, and its minimum occurs at:

* uTAcl-
t uT Au

Substitute t; back into f;(t):

(uT Acj)?
uTAu

fit)) = ¢ Ac;-

We now verify that for every direction u € S?, there exists at least one i €
{1,2,3,4} such that:

fi(ti) <1.
Step 3: Use symmetry of the centers

Let u = (uy, uyus, uy) € S?, then:

uT Au = uf + uZ + 4us.
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Consider for instance ¢; = (2,0,0), then:
ulAc; = 2uy, ¢;TAcy = 4.
So:

Qus)* 4u?

21,2 2 21,2 2
uj+us;+4us uj+us;+4us

filt)) =4-
We are looking for values of u € S? for which thisis < 1.

Because the centers cover the four directions in the plane, for every direction u ,
at least one of the terms:

£ _ 4ui
fi(ti) =4 u2+us+4ul

Hence, for every direction u € S?, the ray £, (t) = tu intersects at least one
ellipsoid E;, satisfying the hypotheses of Theorem 4.1.

Ellipsoids Generating a Full Shadow at the Origin

X Origin (Shadow Target)

Conclusion
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This paper presented a novel sufficient condition for the complete shadow
generation problem using non-spherical, partially m-convex ellipsoids in
Euclidean spaces. Unlike previous studies that relied on spherical symmetry,
our approach introduces directional flexibility through anisotropic quadratic
forms, allowing for fewer covering bodies.

Theorem 4.1 provides a mathematically rigorous criterion based on
quadratic distance functions, ensuring that every ray from the origin intersects at
least one ellipsoid in the constructed configuration. The numerical example in
R3confirms the theoretical result, using only four ellipsoids instead of six
spheres.

This work opens new directions for further exploration. For instance,

similar constructions could be extended to hyperbolic spaces or to convex
bodies with boundary curvature constraints. Moreover, the partial m-convexity
framework may lead to more efficient geometric coverings in applications such
as visibility analysis, robotic sensing, or multidimensional optimization.
In conclusion, the results demonstrate that partial m-convex ellipsoids can
effectively generate complete shadows with fewer objects and more geometric
flexibility. This highlights their potential role in the ongoing development of
generalized convexity theory and geometric optimization.
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