Jornal of Al-Turath Univeresity College Issue.19 {105)

m)esign and Implementation of face recognition attendance\
system based on computer vision APT

Assistant Instructor
Saif Saad Ahmed
Al-Turath University College

Computer science Dep.

k E-mail: siaf saad@yahoo.com /

Abstract

Face recognition presents a challenging problem in the field of image
analysis and computer vision, and as such has received a great deal of attention
over the last few years because of its many applications in various domains. Face
recognition techniques can be broadly divided into three categories based on the
face data acquisition methodology: methods that operate on intensity images;
those that deal with video sequences; and those that require other sensory data
such as 3D information or infra-red imagery. In this paper, an overview of some
of the well-known methods in each of these categories is provided and some of
the benefits and drawbacks of the schemes mentioned therein are examined.
Furthermore, a discussion outlining the incentive for using face recognition, the
applications of this technology, and some of the difficulties plaguing current
systems with regard to this task has also been provided. This paper also
mentions some of the most recent algorithms developed for this purpose and

attempts to give an idea of the state of the art of face recognition technology.

Jornal of Al-Turath Univeresity College Issue.19 (106)
Qﬂ‘éﬁdﬂ‘pﬁim\’w
gl gad) bt daa o dgaly L sl

daa) e G 3o bal) (gu jdall
daalalt & ity 438

ﬁ:ﬂ-.hwla-“ PJSG ‘Maﬁ

Qaldiod|

3 spall dilad Jaa (B s Usia W ol 4 gl pllaa lo Ciatl) Gl o dgisa il 5
Lplad) ALMEY & il 4 go aLOAYY o | S 188 AN 8 gl I ey ¢tk il
ol oo Sy s ga gl (1o ATl S it Sayg, VY cilida B b e) Gay
& Jalatll) llig ¢ puall A o Jant A Gl) SULY aan iagie Lo pliy i e
ol Ll jpall 3D cilaghall Jia s AV Lpuadl iy BT Y A g ¢ gl Jeals
‘;Nauﬁnh‘yasgéﬁws#uvs@ochwu#éﬂ&umi!h‘,,é.(mmn
d ghdlf L2 Lyl inl) J gl ol o 5 gDl , 4h 3 5 08 0l cillabaiiall g 5 Ll 3 (0 (ptaty (pamad
A3 Al Gl gall any g L ol piSl sa Clad g ¢ daglt o Ciath aladiiaY B jiaall Liay
Sl (Al Sl gdl) Casaf Gy N Ll a3, 5 Lagad 03¢y 3ty Lugh Ll phil Lgda

A o Gl AR Vs (e) (e Al 00 5 8B e) N glae g il 13

1.1 Introduction

Humans have been using physical characteristics such as face, voice, etc. to
recognize each other for thousands of years. With new advances in technology,
biometrics has become an emerging technology for recognizing individuals using
their biological traits. Now, biometrics is becoming part of day to day life, where
in a person is recognized by his/her personal biological characteristics. Our goal
is to develop an inexpensive security surveillance system, which will be able to
detect and identify facial and body characteristics in adverse weather

conditions. There are many factors which influence this type of methods i.e.

Jornal of Al-Turath Univeresity College Issue.19 (107)

lighting condition background noise, fog and rain. A particular attention is
given to face recognition. Face recognition refers to an automated or semi-
automated process of matching facial images. Many techniques are available to
apply face recognition one of them is Principle Component Analysis (PCA). PCA
is a way of identifying patterns in data and expressing the data in such a way to

highlight their similarities and differences.

Humans often use faces to recognize individuals and advancements in
computing capability over the past few decades now enabled similar
recognitions automatically. Early face recognition algorithms used simple
geometric models, but the recognition process has now matured into a science of
sophisticated mathematical representation and matching processes. Major
advancements and initiative in the past ten to fifteen years have propelled face
recognition technology into the spotlight. Face recognition can be used for both

verification and identification (open —set and closed-set).

1.2 Problem Statement

o Almost all the face databases have frontal faces. Hence, for matching we
require the frontal face image or one should have to generate the frontal
face features from the non-frontal face image.

e Linear Object Class assumptions ensures that there exists a linear
transformation which relates feature vector of two different posed
images.|1]

o TIn this work we have estimated this transformation and generate frontal

face features from the features of posed image.

The face recognition problem can be formulated as follows: Given an input face
image and a database of face images of known individuals, how can we verify or

determine the identity of the person in the input image.

lornal of Al-Turath Univeresity College Issue.19 (108)

1.3 Aims and Objectives

The goal of this project is to create a prototype to reduce the amount of
climacteric factors to provide facial recognition and facial tracking in day
light surveillance and night vision surveillance for wide areas. Also, it
implements pan and tilt support to give the ability to rotate the cameras
by software control. The aim of face recognition is to identify or verify one or
more persons from still images or video images of a scene using a stored
database of faces,

This project is a step towards developing a face recognition system which can
recognize static images. It can be modified to work with dynamic images. In that
case the dynamic images received from the camera can first be converted in to
the static one's and then the same procedure can be applied on them, But then
there are lots of other things that should be considered. Like distance between

the camera and the person, magnification factor, view [top, side, front] ete.
Objectives:

1) To recognize a sample face from a set of given faces.

2) Use of Principal Component Analysis |Using Eigen face approach].

3) Use a simple approach for recognition and compare it with Eigen face

approach.

4) Suggest which one is better and why. It may happen that in some cases latter

may work better than former approach and vice versa.
2.1 Introduction

This chapter explains how a face can be tracked. As with earlier examples, I'll
grab frames from the webcam, and draw them rapidly onto a panel. At the same
time, a detector analyzes the frames to find a face and highlight it in the panel.

The application, called Face Tracker is shown in Figure 1.

Jornal of Al-Turath Univeresity College Issue.19 (109)

seconds
later

Figurel. Face Tracking over Time.

The tracker draws a yellow rectangle around the face, and red crosshairs

centered inside the rectangle.

The detection code is fast when there's a face present in the image (around
40ms), but may take substantially longer to decide there's no face (as much as
200ms). Two important aspects of the coding are finding ways to speed up the
detection, and making sure that lengthy detection processing don't slow down
the rest of the program (in particular, the rendering of successive images onto

the panel).

The next chapter will extend the processing to recognize the tracked face. The
distinction between face detection and recognition is that recognition returns a

name for the face.

Detection is carried out by a Haar classifier, pre-trained to find facial features
(when viewed front-on). The classifier's training requires a great deal of time,
but thankfully I can skip that stage because I'm using a face classifier that's

already part of OpenCV.
2.2 Face Detection

The FaceDetection.java example described in this section reads an image from a

file, locates all the faces in the picture. It draws yellow rectangles around them,

Jornal of Al-Turath Univeresity College Issue.19 (110)

then writes the modified image out to a new JPEG file. Figure 2 shows an

example image before and after the faces have been identified.

after face
detection

Figure2. Finding Faces in an Image.

The face detection uses the same Haar classifier that I'll be employing later on in
my tracker application, and Figure 2 highlights some of the strengths and
weaknesses of the approach. Multiple faces can be found easily and quickly, but
only if a face is almost level and almost completely visible. For instance, the
classifier failed to label the men at the left and right edges of the image because
too much of their faces are missing or obscured. Also, a Haar classifier can often
return false positives — highlighted areas which are not faces. This can be seen in

the right hand image of Figure 2, where a crinkled shirt elbow is misidentified.
The code for FaceDetection.java:
The code for FaceDetection.java:

import com.googlecode.javacv.*; import com.googlecode.javacy.cpp.*; import

com.googlecode.javacpp.Loader;

import static com.googlecode.javacv.cpp.opencv_core.*; import static
com.googlecode.javacv.cpp.opencv_imgproc.*; import static
com.googlecode.javacv.cpp.opencv_highgui.*; import static

com.googlecode.javacv.cpp.opencv_objdetect.*;

public class FaceDetection {

lornal of Al-Turath Univeresity College _lssue.19 (111)
private static final int SCALE = 2;

/f scaling factor to reduce size of input image

// cascade definition for face detection private static final String
CASCADE _FILE = ""haarcascade_frontalface_alt.xml";

private static final String OUT_FILE = "markedFaces.jpg";
public static void main(String[] args){

if (args.length != 1) { System.out.printin(*'Usage: run FaceDetection <input-

file>""); return;}

// preload the opencv_objdetect module to work around a known bug
Loader.load(opencv_objdetect.class);

// load an image

System.out.println('"Loading image from " + args[0]); IplImage origlmg =
cvLoadImage(args[0]);

// convert to grayscale
Ipllmage graylmg =cvCreateImage(cvGetSize(origlmg), IPL_DEPTH_8U, 1);
cvCvtColor(origImg, graylmg, CV_BGR2GRAY);

/I scale the grayscale (to speed up face detection) IplImage smalllmg =
Ip]Image.create(graylmg.width()/SCALE,

grayImg.height()/SCALE, IPL._DEPTH_8U, 1);
cvResize(graylmg, smalllmg, CV_INTER_LINEAR);
// equalize the small grayscale cvEqualizeHist(smalllmg, smalllmg);

// create temp storage, used during object detection

Jornal of Al-Turath Univeresity College Issue.19 {112)

CvMemStorage storage = CvMemStorage.create();
/! instantiate a classifier cascade for face detection

CvHaarClassifierCascade cascade =new
CvHaarClassifierCascade(cvLoad(CASCADE_FILE));
System.out.printin("'Detecting faces...");

CvSeq faces = cvHaarDetectObjects(smalllmg, cascade, storage,

11,3, CV_HAAR_DO_CANNY_PRUNING);

cvClearMemStorage(storage);

// draw thick yellow rectangles around all the faces int total = faces.total();
System.out.printin(""Found " + total + "' face(s)");for (int i = 0; i < total; i++) {

CvRect r = new CvRect(cvGetSeqElem(faces, i));cvRectangle(origimg, cvPoint(
r.x()*SCALE, r.y()*SCALE),evPoint((r.x() + r.width())*SCALE, (r.y() +
r.height())*SCALE),CvScalar.YELLOW, 6, CV_AA, 0);

// undo image scaling when calculating rect coordinates

} if (total > 0) { System.out.println("'Saving marked-faces version of "' +
args[0] + " in " + OUT_FILE); cvSavelmage(OUT_FILE, origImg);

}} // end of main() }

// end of FaceDetection class

The image preprocessing consists of three steps: conversion of the color input
image to gray scale (necessary for the subsequent equalization and Haar
detection), scaling to reduce the size of the image (and thereby reduce the
detection time), and gray scale equalization. Equalization examines the image's

- range of gray scale values and widens them to cover more of the total range

Jornal of Al-Turath Univeresity College Issue.19 {113)

from black to white. The result is an image with larger contrasts between

similarly shaded areas, which makes object detection easier later on.
2.3 The Face Tracker

My tracker application (see Figure 1) captures webcam snaps with JavaCV's
FrameGrabber and then performs face detection using code similar to the

previous section. The class diagrams for the application are given in Figure 4.

FaceTracker

::¢<Unknown>>::JFrame
B FaceTracker(...)
A man(...)

FacoPanel | ::«Uv&mn))::.leﬂJ
@ closeDownl..}

EFaceF‘nne][]

iPreasedsE)

M painCompanend].) Tam
ry...)

B saveFace!..)

<< interface>>
::¢<<Unknown>>::Runnabls

Figure 3. Class Diagrams for the FaceTracker Application.

I won't bother explaining the top-level FaceTracker class — i’s a standard
JFrame which creates the FacePanel object, and a button. Pressing the button,
labeled as "Save Face", makes FacePanel save the currently highlighted face
(i.e. the sub image inside the yellow rectangle) to a file. The Face Panel class
spends much of it's time inside a threaded loop which repeatedly grabs an image
from the webcam and draws it onto the panel until the window is closed.
FacePanel differs from similar panel classes in earlier examples in one
important way. Since face detection is such a time consuming process, it is
farmed out to a separate thread that uses a mixture of Java 2D and JavaCV.

The rest of this chapter will describe these aspects in more detail.

2.4 Initializing the Detector

Jornal of Al-Turath Univeresity College _Issue.19 (114)

When cvHaarDetectObjects() is eventually called, it has two prerequisites that I
can deal with at start-up time: I load the classifier's XML file, and create
dynamic storage which will be allocated as the function progresses. This occurs

in the initDetector() method, called from FacePanel's constructor:
// globals
// classifier for face detection

private static final String FACE_CASCADE_FNM =

"haarcascade_frontalface alt.xml";

// ""haarcascade_frontalface alt2.xml";

private CvHaarClassifierCascade classifier;

private CvMemStorage storage;

private CanvasFrame debugCanvas;

private void initDetector() {

// instantiate a classifier cascade for face detection

classifier = new CvHaarClassifierCascade(cvLoad(FACE_CASCADE_FNM));

if (classifier.isNull)) { System.out.printin("\nCould not load: " +
FACE_CASCADE_FNM); System.exit(1); }

storage = CvMemStorage.create();

// create storage used during object detection

// debugCanvas = new CanvasFrame(''Debugging Canvas");
} // end of initDetector()

The code for the creation of a debugCanvas object is commented out, It was

used during debugging to show the intermediate stages in an image's

Jornal of Al-Turath Univeresity College Issue.19 (115)

transformation. CanvasFrame is a useful way of quickly displaying an image

without creating additional GUI elements in the Swing application.
2.5 The Display Loop

The FacePanel() constructor invokes a thread which starts the webcam display
loop inside run(). The method is similar to what we've seen before, except when
it passes the snapped image to trackFace() for processing (shown in bold in the

following):

// globals

private static final int DELAY = 100;

// time (ms) between redraws of the panel
private static final int CAMERA_ID = 0;
private static final int DETECT_DELAY = 500;

// time (ms) between each face detection private static final int MAX_TASKS =
4

// max no. of tasks that can be waiting to be executed
private Iplimage snapIm = null; private volatile boolean isRunning;

// used for the average ms snap time information private int inageCount =

0;private long totalTime = 0;

// used for thread that executes the face detection private AtomicInteger

numTasks;

// used to record number of detection tasks private long detectStartTime = 0;
public void run() { FrameGrabber grabber = initGrabber(CAMERA_ID); if

(grabber = null) return;long duration;

Jornal of Al-Turath Univeresity College Issue.19 (116)

iSRunning = true;while (isSRunning) { long startTime =
System.currentTimeMillis();snapIm = picGrab(grabber, CAMERA ID);

if (((System.currentTimeMillis() - detectStartTime) > DETECT DELAY) &&
(numTasks.get() < MAX_TASKS)) trackFace(snapIm);imageCount++;
repaint(); duration = System.currentTimeMillis() - startTime;

totalTime += duration; if (duration < DELAY) { try { Thread.sleep(DELAY-
duration); }catch (Exception ex) {}}} closeGrabber(grabber, CAMERA_1ID); } //

end of run()

Face detection, even after various speed optimizations, can still take a 200ms to
fail to find anything. Such a lengthy delay would severely affect run()'s display
loop, which is meant to draw a new image onto the panel roughly every DELAY
(100) ms.I get around that problem by utilizing a separate thread to execute the
work inside trackFace() (see below for details), allowing the display loop to
progress without delay. Altogether, FaceTracker utilizes three threads — the
GUI event thread, a thread containing the display loop in run(), and a face

detection thread inside trackFace().

Due to the time-consuming nature of trackFace()'s work, I limit its call
frequency to once every DETECT_DELAY (500) ms. I'll explain the other part
of the if-test around the trackFace() call — the test of the numTasks atomic

integer — shortly.

trackFace()'s threaded pature means that its call in run() will return almost
immediately, before the detection task has been completed. As a consequence,

the duration calculated inside run() doesn't include detection time.
2.6 Tracking a Face in a Thread

The simplest way of implementing a threaded detection task is to fire off a new

thread each time an image needs to be analyzed. This is almost certainly not a

lornal of Al-Turath Univeresity College Issue.19 (117)

good idea since we don't know whether the underlying OpenCYV library (i.e. the
C code inside OpenCV's DLLs) is capable of dealing with multiple detection

tasks being carried out at the same time.

It's hard to test OpenCV's robustness in the face of concurrency, since any
problems depend on how multiple calls overlap in their use of global data
structures, DLLs, and the underlying OS. It's better to avoid the problem

altogether by enforcing a

restriction that only one detection task can execute inside the detection thread at

a time; pending tasks will have to queue up to wait their turn.

Since Java 5, it's been easy to create threads with this kind of behavior, by using

an ExecutorService object to manage a single threaded executor:
// global

private ExecutorService executor;

// in the FacePanel() constructor

executor = Executors.newSingleThreadExecutor();

The factory method, Executors.newSingleThreadExecutor(), creates an executor
consisting of a single worker thread taking tasks off an unbounded queue one at
a time. Tasks are guaranteed to execute sequentially, and no more than one task

will be active at any given time.

One way of improving this execution scenario is to limit the length of the task
queue, since we don't want an unbounded number of detection tasks waiting to
be processed. The queue length can be limited by using an atomic integer as a

counter to record the number of tasks currently on the queue:

// globals

dornal of Al-Turath Univeresity College Issue.19 (118)

private static final int MAX TASKS =4;

// ' max no. of tasks that can be waiting to be executed private AtomicInteger

numTasks;

// used to record number of detection tasks
// in the FacePanel constructor()
numTasks = new AtomicInteger(0);

nunTasks is atomic since both the webcam display and detection threads are
able to modify it. I don't want problems to arise if they try to manipulate the

integer at the same time.

The second half of the if-test around the call to trackFace() implements the

bounded queue requirement:

if (((System.currentTimeMillis() - detectStartTime) > ETECT_DELAY) &&
(numTasks.get() < MAX_TASKS)) trackFace(im);

trackFace() is only called if there are less than MAX_TASKS (4) tasks

associated with the executor — one running and three waiting.
2.7 Detecting a Face

The face detection code inside trackFace() is in a run() method. It's invocation is

added to the executor's queue as a pending task when trackFace() is called:
// globals

private IplImage grayIm; private volatile boolean saveFace = false;

// set by the ""Save Face" button

private void trackFace(final Ipllmage img){

graylm = scaleGray(img); numTasks.getAndIncrement();

Jornal of Al-Turath Univeresity College Issue. 19 {119)

// increment no. of tasks before entering queue
executor.execute(new Runnable() { public void run() {

detectStartTime = System.currentTimeMillis(); CvRect rect =

find Face(grayIm); if (rect != null) { setRectangle(rect); if (saveFace) {
clipSaveFace(img); saveFace = false; } }1)); long detectDuration
=System.currentTimeMillis() - detectStartTime; System.out.printin('* detect
time: " + detectDuration + ""ms"); numTasks.getAndDecrement();

// decrement no. of tasks since finished
} // end of trackFace()

The hard work of face detection by the Haar classifier is hidden away in
find Face(), which returns a single JavaCV rectangle object. This information is
stored by setRectangle() for later rendering onto the panel, and the clipped face

is saved if the ""Save Face" button has been pressed.

The task counter, numTasks, is incremented outside the run() method since I
want to record the number of tasks queuing as well as the one currently
executing. However the counter is decremented at the end of the task (the last

line of rung()).

The Haar classifier requires a grayscale image, which is generated by
scaleGray() before the thread starts. scaleGray() also reduces the image's size, to
speed up the processing, and equalizes it. The code is very similar to that

performed in the earlier Face Detector example.

The time taken by the classifier is printed to standard output. On my slow test
machine, finding a face usually took 20-50ms while failing to find one could take
between 70-200ms. These times indicate that I could increase the detection
activation frequency which is currently set at once every DETECT_DELAY
(500) ms.

Jornal of Al-Turath Univeresity College Issue.19 (120}

2.8 Finding a Face

The find Face() method calls the Haar classifier, and extracts a single rectangle

from the result.

private CvRect findFace(IplImage graylm) {

// Haar classification

CvSeq faces = cvHaarDetectObjects(graylm, classifier, storage,

11,1, CV_HAAR_DO_ROUGH_SEARCH |
CV_HAAR _FIND_BIGGEST OBJECT);

/* speed things up by searching for only a single,

largest face subimage */ int total = faces.total();if (total = 0) {
System.out.printin("'No faces found"); return null;}

else if (total > 1) System.out.println("Multiple faces detected ("' + total
+'"); using the first"); else System.out.println("'Face detected');
CvRect rect = new CvRect(cvGetSeqElem(faces, 0)); //get rectangle
cvClearMemStorage(storage);

return rect;} // end of findFace()

The arguments of the cvHaarDetectObjects() call are a little different from those
in my earlier FaceDetection.java example, The fifth argument sets the number
of overlapping detections needed before a region is deemed to contain an object
to only 1 (it was 3 in Face Detection). Reducing this value increases processing

speed, but increases the chance of negative hits.

The final argument is an OR'ed combination of
CV_HAAR DO ROUGH_SEARCH and

Jornal of Al-Turath Univeresity College Issue.19 (121)
CV_HAAR_FIND_BIGGEST_OBJECT which signals that only the largest

object need be returned, and that a faster search is preferred. Canny pruning

isn't included since it interacts unfavorably with the rough search setting.

During debugging, it was useful to display the JavaCV image utilized in
findFace(). I added the following lines at the start of the method:

// show the grayscale debugCanvas.showImage(graylm);

debugCanvas.waitKey(0);
2.9 Saving a Rectangle

setRectangle() extracts the face rectangle's coordinates ((x, y), width, height)
from the JavaCV data structure and stores them in a Java Rectangle object. In
the process, the data is enlarged, so it has the same scale as the original snapped

image.
// globals

private static final int IM_SCALE = 4; private static final int SMALL_MOVE =
oH

private Rectangle faceRect; // holds coords of highlighted faceprivate void
setRectangle(CvRect r) { synchronized(faceRect) { int xNew =
r.x()*IM_SCALE; int yNew = r.yO*IM_SCALE; int widthNew =
r.width()*IM_SCALE; int heightNew = r.height()*IM_SCALE;

// calculate movement of new rectangle compared to previous one int xMove =
(xNew + widthNew/2) -(faceRect.x + faceRect.width/2); int yMove = (yNew +
heightNew/2) -(faceRect.y + faceRect.height/2);

// report movement only if it is 'significant’ if ((Math.abs(xMove)>
SMALL_MOVE) || (Math.abs(yMove) > SMALL_MOVE))

System.out.println(""Movement (x,y): ("' +xMove + """ +yMove +')");

Jornal of Al-Turath Univeresity College Issue.19 (122)
faceRect.setRect(xNew, yNew, widthNew, heightNew);

}} // end of setRectangle()

Perhaps the most mysterious aspect of setRectangle() is its use of a synchronized
block. It's present because there's a possibility that faceRect can be used in two
threads at the same time. The face detection thread calls setRectangle() and
clipSaveFace() which both access faceRect, while the Java GUI thread needs it

for drawing.

The movement of the current face rectangle compared to the last one is
calculated in setRectangle(), but not used elsewhere in the application. I
included the code since such information would be useful in more complex face

tracking applications.
2.10 Rendering the Highlighted Face

Figure 4 shows a typical rendering of the highlighted face in Face Tracker.

Figure4. A Highlighted Face.

The panel contains four elements: the webcam image in the background, a
yellow rectangle, a red crosshairs image, and statistics written at the bottom left

corner.

All rendering is done through calls to the panel's paintComponent():

Jornal of Al-Turath Univeresity College Issue.19 (123)

// global

private Ipllmage snapIm = null; / current webcam snap

public void paintComponent(Graphics g) { super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g; g2.setFont(msgFont);

// draw the image, stats, and detection rectangle if (snapIm !=null) {

g2.setColor(Color.YELLOW);g2.drawImage(snapIm.getBufferedImage(), 0,0,
this); String statsMsg = String.format("'Snap Avg, Time: %.1f ms",

((double) totalTime / imageCount)); g2.drawString(statsMsg, 5, HEIGHT-10);

// write statistics in bottom-left corner drawRect(g2); } else {// no image yet
g2.setColor(Color.BLUE); g2.drawString("'Loading from camera "+
CAMERA ID +"...", 5, HEIGHT-10); } } // end of paintComponent()

drawRect() is in charge of drawing the yellow rectangle and the crosshairs:
// global private Rectangle faceRect; // coords of the highlighted face

private void drawRect(Graphics2D g2) { synchronized(faceRect) {if
(faceRect.width = 0) return; // draw a thick yellow rectangle
g2.setColor(Color. YELLOW); g2.setStroke(new BasicStroke(6));
g2.drawRect(faceRect.x, faceRect.y,faceRect.width, faceRect.height); int
xCenter = faceRect.x + faceRect.width/2; int yCenter = faceRect.y +
faceRect.height/2; drawCrosshairs(g2, xCenter, yCenter);

1} // end of drawRect()

drawRect() uses a synchronized block for the same reason as setRectangle()
earlier — I don't want its access to the rectangle information to be affected by
other threads.

Standard Java2D code is used to draw the rectangle, replacing my earlier use of

JavaCV's cvRectangle() in FaceDetection.java.

Jornal of Al-Turath Univeresity College Issue.19 (124)

drawCrosshairs() draws a pre-loaded PNG image (see Figure 5) so it's centered

at the given coordinates.

FigureS. The Crosshairs Image.
Chapter Three
3.1. GUI Face Recognizer Applications

In the last chapter I developed software that could detect and track a face as it
moved in front of a webcam. The next step, and the topic of this chapter, is to

attach a name to the face, to recognize it using a technique called Eigen faces.

The outcome is the GUI application shown in Figure 1.

Recoghland: andipw

| Detmmton hacs | Marrwss ntsoew 0 81001

Figure 1 A GUI Face Recognizer Application.

When the user presses the '"Recognize Face" button (at the bottom of the

window in Figure 1), the currently selected face is compared against a set of

Jornal of Al-Turath Univeresity College Issue.19 (125)

images that the recognizer code has been trained against. The name
associated with closest matching training image is reported in a text field
(and in yellow text in the image pane), along with a distance measure

represented the 'closeness' of the match.

The recognition process relies on a preceding training phase involving

multiple facial images, with associated names. Typical training images are

aree3.pg areed.png aree5.png

andreved.png aree(.png

shown in Figure 2.

'

andrew.png

paeranut(l prg peerarut] prg seksuni ,phg

suntorn].png

sunkomd.png suntorm2.png
chari png h 1.000 ch png h 3.0

sunbornd.png

wasiné.png

Figure 2 Training Images.
It's important that the training images all be cropped and orientated in a
similar way, so that the variations between the images are caused by facial
differences rather than differences in the background or facial position.
There should be uniformity in the images' size, resolution, and brightness.
It's useful to include several pictures of the same face showing different
expressions, such as smiling and frowning. The name of each person is

encoded in each image's filename. For instance, I'm represented by three

Jornal of Al-Turath Univeresity College Issue.19 (126)

image files, called "andrew1.png", "andrew2.png", and "andrew4.png''.
The training process creates Eigen faces which are composites of the training
images which highlight elements that distinguish between faces. Typical

Eigen faces generated by the training session are shown in Figure 3.

Figure 3 Some Eigen faces.

Due to their strange appearance, Eigen faces are sometimes called ghost faces.

Each training image can be represented by a weighted sequence of Eigen
faces, as depicted in Figure 4.

training image

weights sequence:
{wy, wp, Wy, Wy, ws, Wg)

eigenfaces

Jornal of Al-Turath Univeresity College

Issue.19

(127)

Figured. A Training Image as a Weights Sequence of Eigen faces.
The idea is that a training image can be decomposed into the

weighted sum of multiple Eigen faces, and all the weights stored as a

sequence.

Not all Eigen faces are equally important — some will contain more

important facial elements for distinguishing between images. This means

that it is not usually necessary to use all the generated Eigen faces to

recognize a face. This allows an image to be represented by a smaller

weights sequence (e.g. using only three weights instead of six in Figure 4).

The downside is that less weights means that less important facial elements

will not be considered during the recognition process.

Another way of understanding the relationship between Eigen faces and

images is that each image is positioned in a multi-dimensional Eigen space;

whose axes are the Eigen faces (see Figure 5)

4 eigenspace
location =
(w1, w2, w3, w4, w5, wb)

w2 u .
s !

multi-dimensional

eigenspace
-
=. gl
each axis is an eigenface -y

Figure S an Image in Eigen space.

Jornal of Al-Turath Univeresity College Issue.19 (128)

The weights can now be viewed as the image's coordinates in the Eigen

space. Due to my poor drawing skill, I've only shown three axes in Figure 5,
but if there are six weights, and then there should be six orthogonal axes
(one for each Eigen face).

After the training phase comes face recognition. A picture of a new face is
decomposed into Eigen faces, with a weight assigned to each one denoting
its importance (in the same way as in Figure 4). The resulting weights
sequence is compared with each of the weights sequences for the training
images, and the name associated with the 'closest' matching training imsge

is used to identify the new face.

Alternatively, we can explain the recognition stage in terms of Eigen spaces:
the new image is positioned in the Eigen space, with its own coordinates
(weights). Then a distance measure (often Euclidean distance) is used to

find the closest training image (see Figure 6).

(emi:lrtw)

- shortest distance mul!::-dlmensxonal
— eigenspace of
‘ ' training images

o - '

Figure6. Recognizing an Image in Eigen space.

Jornal of Al-Turath Univeresity College Issue.19 (129)

Although I've been using faces in my explanation, there's nothing
preventing this technique being applied to other kinds of pictures, in which
case it's called Eigen image recognition. Eigen imaging is best applied to
objects that have a regular structure made up of varying subcomponents.
Faces are a good choice because they all have a very similar composition
(two eyes, a nose and mouth), but with variations between the components

(e.g. in size and shape).

Recognizing a New Image

The other major part of my modified version of Java faces is the code to
reading in a new image (new data), and deciding which of the training
images it most closely resembles. The top-level class is Face Recognizer,
and uses many of the same support classes as Build Eigen Faces. The

classes are shown in Figure 7.

//M W\ e

= el | Il

[==]

<(interlaced > . M -0 DodbleMatinZD
::¢<<Unknoswmd>::Seriakizable

[=]

Figure 7 Classes Used by face Recognizer.

Face Recognizer is quite separate from Build Eigen Faces, but they share
information via the Eigen. Cache file. face Recognizer starts by loading the

cache, and converts it back into a Face Bundle object. It loads the new

Jornal of Al-Turath Univeresity College Issue.19 (130)

image using methods from the FileUtils and ImageUtils classes,

The face Recognizer constructor uses the calcWeights() method in Face
Bundle to create weights for the training images. This is done now rather
than at build-time because it’s only during face recognition that the user
supplies the number of Eigen faces that will be used during the
recognition process. Face Bundle, calcWeights()

is listed below:

// in the FaceBundle class
public double[][] caleWeights(int numEFs)
{

Matrix2D imsMat = new Matrix2D(imageRows); // training images

Matrix2D facesMat = new Matrix2D(eigenFaces);
Matrix2D facesSubMatTr =
facesMat.getSubMatrix(numEFs).transpose();

Matrix2D weights = imsMat.multiply(facesSubMatTr);
return weights.toArray();} // end of calcWeights()

The required number of Eigen faces is supplied in the numEFs variable,
and the resulting weights array is calculated by multiplying the images
matrix to a sub matrix of the Eigen faces. The multiplication is illustrated
in Figure 8 (recall that we are assuming that an image is N x N pixels big,

and there are M training images).

Jornal of Al-Turath Univeresity College Issue.19 (131)

N B s nunEFs
M X 1 = M
training transposed weights
1mages eigenfaces
submatrix

Figure 8 Creating the Training Image weights.
One way of understanding these weights are as the new coordinates of the
M training images after they have been rotated so numEFs eigenvectoré
align with the axes.
3.1, Finding a Match
The critical method in face Recognizer is find Match () which carries out
the comparison of the new image with the training images. It employs
Eigen faces and eigenvectors retrieved from the face Bund le object:
private MatchResult findMatch(BufferedImage im)
{double[] imArr = ImageUtils.createArrFromIm(im);
//new image [one-dimensional array
// convert array to normalized 1D matrix
Matrix2D imMat = new Matrix2D(imArr, 1);
imMat.normalise();imMat.subtract(new
Matrix2D(bundle.getAvgimage(), 1));
// subtract mean image
Matrix2D imWeights = getimageWeights(numEFs, imMat);
// map image into eigenspace, returning its coords (weights);
// limit mapping to use only numEFs eigenfaces
double[] dists = getDists(imW eights); ImageDistanceInfo
distInfo = getMinDistInfo(dists);
// find smallest Euclidian dist between image and training imgs
ArrayList<String> imageFNms = bund le.getimageFnms();

Jornal of Al-Turath Univeresity College Issue.19 (132)

String matchingFNm = imageFNms.get(distInfo.getIndex());
// get the training image filename that is closest

double minDist = Math.sqrt(distInfo.getValue());

return new MatchResult(matchingFNm, minDist);

} // end of findMatch()

The new image is converted into a one-dimensional array of pixels of length

Nz, then converted into a normalized matrix with the average face image
subtracted from it (imMat). This is essentially the same transformation as
that applied to the training images at the start of Build Eigen Faces. Make
Bundle ().

The image is mapped into Eigen space by getImageWeights(), which
returns its resulting coordinates (or weights) as the inWeights matrix
private Matrix2D getImageWeights(int numEFs, Matrix2D imMat)

{

Matrix2D egFacesMat = new Matrix2D(bundle.getEigenFaces());

Matrix2D egFacesMatPart = egFacesMat.getSubMatrix(numEFs);
Matrix2D egFacesMatPartTr = egFacesMatPart.transpose();

return imMat.multiply(egFacesMatPartTr);
} // end of getimageWeights()
Only the specified numEFs Eigen faces are used as axes. The matrix

multiplication is shown in Figure 9.

numEFs

N2 numEFs

I x W = ‘ =S

input .

image weights
transposed
eigenfaces
submatrix

Figure 9 Creating the Input Image Weights

Jornal of Al-Turath Univeresity College Issue.19 (133)

The multiplication is similar to the one in Face Bundle. calcWeights(). The
difference is that only a single image is being mapped in Figure 9, whereas
in Figure 20 all the training images are being transformed.
Find Match() calculates the Euclidian distance between the new image and
the training images by comparing the new image's weights (in imWeights)
with the weights for the training images. getDists() returns an array of the
sum of the squared Euclidian distances between the input image weights and
all the training image weights; the function doesn't use Colt's
Statistic.distance() method.
The shortest distance in the array is found with getMinDistInfo(), which
also returns the index position of the corresponding training image,
wrapped up inside an Image Distance Info object. This index is used to
lookup the name of the training image filename. Together the filename and
distance are returned to the top-level as a Match Result object.
3.2. Performing Face Recognition
The following code fragment shows how the face Recognizer class can be used:
Face Recognition fr = new face Recognition (15); // use 15 Eigen faces
MatchResult result = fr.match("'andrew0.png'); // match new data

// find a training image closest to "andrew(.png"
if (result = null) System.out.println("'No
match found");
else { // report matching fnm, distance, name
System.out.printin();
System.out.print(""Matches image in "' + result.getMatchFileName());
System.out.printf("'; distance = %.4f\n",
result.getMatchDistance()); System.out.println("'Matched name: " +
result.getName());
}

Jornal of Al-Turath Univeresity College Issue.19 (134)

The new data in "andrew0.png" is shown in Figure 10.

Figure 10. The "andrew0.png'" Image. The result of running the code is:
Using cache: eigen.cache

Number of eigenfaces: 15

Reading image andrew0.png

Matches image in trainingImages\andrew2.png; distance = 0.4840

Matched name: andrew

The image most closely matched "andrew2.png" in the training data, which

is shown in Figure 11.

Figure 11 the (Rather Grumpy-looking) ""andrew2.png" Image.
The name, "andrew", is extracted from the filename (all filenames are
made up of a name and a number), and the distance measure is 0.4840.
One problem with this approach is interpreting the meaning of the distance
value. Just how close is 0.4840? Unfortunately, this will depend on the
particular training image data set, and so the resulting Eigen faces will need
to be tested with various images to decide whether 0.484 means "very

similar" or "just barely alike".

This problem is highlighted if we run the code again, but with a face which

lornal of Al-Turath Univeresity College |ssue.19 (135)

is not in the training set. The "jim0.png" image is shown in Figure 12.

Figure 12 the "jim0.png" Image.
The output of the match

code is:

Number of Eigen faces: 15

Matching jim0.png

Reading image jim0.png

Matches image in training Images\peeranutl.png; distance = 0.6684
Matched name: peeranut

The image has been matched with peeranutl.png, shown in Figure 13.

Figure 13 the "peeranutl.png'’ Image.
Of course, this is an incorrect match, but how can we recognize that in code?
All we have to go on is the distance measure, which is 0.6684. Clearly, if the
distance reaches a value like this, we should report "no match'. However, the
exact threshold value Will depend on the training set and the type of images
passed for recognition.

3.3 Generating Training Images

Jornal of Al-Turath Univeresity College Issue.19 {136)
The simplest way of obtaining training images is by adding "Save Face"

functionality to the face tracking code of the last chapter. In fact, if you've
looked at the code for NUI , you'll find that the necessary code is already
there, but I didn't explain it in the text. Figure 14 shows the face Tracker

application in action.

Figure 14 the Face Tracker Application
The button at the bottom of the window reads '"Save Face". When pressed, it
sets a Boolean called save face to true by calling save Face () in the Face Panel
class:
// in FacePanel.java in FaceTracker
// global
private volatile boolean saveFace = false;
public void saveFace(){ saveFace= true; }
Since saveFace will be manipulated in two different threads, it's declared as
volatile.
Nothing more happens until trackFace() executes a task in the detection
processing thread.
// in FacePanel.java in FaceTracker

private void trackFace(final Ipllmage img)

Jornal of Al-Turath Univeresity College Issue.19 (137)

{graylm = scaleGray(img); numTasks.getAndIncrement(); executor.execute(new
Runnable() { public void run()
{detectStartTime = System.currentTimeMillis(); CvRect rect=
findFace(graylm);
if (rect != null) {
setRectangle(rect); if (saveFace) {
clipSaveFace(img);
saveFace = false;
Y
long detectDuration =
System.currentTimeMillis()- detectStartTime;
System.out.printin("’ duration: "' + detectDuration + ""ms'");
numTasks.getAndDecrement();
} // end of track Face ()
If a face is found in the current image, and save Face is true, then clip
Save Face() is called to save the face to a file.
Clip Save File () is passed the complete webcam image so it can do its own
clipping, resizing, and gray scale transformations. It employs the global face

Rect Rectangle for clipping.

I/ globals

private Rectangle faceRect; // holds coords of highlighted face
private void clipSaveFace(Iplimage img)

{

BufferedImage clipIm = null;

synchronized(faceRect) {

if (faceRect.width=0) {

System.out.printin(''No face selected");

return;

Jornal of Al-Turath Univeresity College Issue.19 (138)

1BufferedImage im = img.getBufferedImage();

try {clipIm = im.getSubimage(faceRect.x, faceRect.y, faceRect.width,
faceRect.height);

} catch(RasterFormatException e) {

System.out.printin("'Could not clip the image');

3

if (clipIm != null)
saveClip(clipIm);

} // end of clipSaveFace()

faceRect is employed inside a synchronized block because it may be

updated at the same time in other threads.

Save Clip() resizes the clip so it's at least a standard predefined size suitable
for face recognition, converts it to gray scale, and then clips it again to
ensure that it is exactly a standard size. Finally the image is stored in saved

Faces/.

// globals

// for saving a detected face image

private static final String FACE_DIR = "savedFaces'';
private static final String FACE_FNM = ""face";
private int fileCount = 0;

/{ used for constructing a filename for saving a face
private void saveClip(BufferedImage clipIm)

{

System.out.println(''Saving clip..."); BufferedImage
graylm = resizelmage(clipIm); Bufferedlmage

facelm = clipToFace(graylm);

Jornal of Al-Turath Univeresity College Issue.19 (139)

savelmage(faceIm, FACE_DIR + "/" + FACE_FNM + fileCount + ".png'");
fileCount++;

} // end of saveClip()

resizeImage(), clipToFace(), and savelmage() employ standard Java2D
functionality;

no use is made of JavaCV.

Once several faces have been saved, their files need to be copied over to the
Build Eigen Faces application, which can utilize them as training images. It's
necessary to rename the files so they consist of the person's name followed by
a unique number.

3.4 A GUI for Recognizing a New Image

The GUI for face recognition is shown in Figure 15.

Figure 15 GUI Face Recognizer.

Jornal of Al-Turath Univeresity College Issue.19 (140)
The code is closely based on the face Tracker application of NUI, but with a

different set of GUI controls at the bottom of the window. When the user presses
the '"Recognize Face' button, the currently selected face is passed to the face
Recognition class, and the matching training image name and distance measure
are reported. It's hard to see in Figure 15, but my name was returned with a
distance value of 0.5754. This is quite high, which suggests that the match wasn’t

exact.

The program is a 'gluing' together of code that I've already discussed - the
GUI comes from face Tracker, while the recognition processing uses the face
Recognition class described earlier in this chapter. As a consequence, I'm

only going to explain the 'glue’ where the GUI and recognizer meet.

FaceRecognizer
[i ::<<Unknowm>>::JFrame I
B FaceFecognized.)
[# mani,..)
E sethecogNamel...)
AN
FaceAecogPanel ‘/Jvt«Unkmm))::JPaml]
B closeDown...)
E meeﬂecoﬂ“oml = |
B8 rur.] Dy <<interfaced>
B selRecogl...) ::<<Unknown>>::Runnable
\]
I ImageUtils | [FaceRecognition l

Figure 16 Class Diagrams for face Recognizer.

The face Recognizer and Face RecogPanel classes are mostly the same as the
Face Tracker and face Panel classes from the previous chapter, but with new

names.

Jornal of Al-Turath Univeresity College Issue.19 (141)

The face Recognizer class adds a button and text field to its window, while
Face RecogPanel includes code for communicating with those GUI
elements, and for calling the Face Recognition class.

The ImageUtils class contains support methods for Buffered Image

manipulation, such as clipping and resizing.

Conclusion

Face recognition is one of the several techniques for recognizing people.
There are several methods that can be used for that purpose. Some of the
most common are using PCA or Eigen faces. Thought there are other new
techniques more simple to understand use and implement but also with very
good performance. The ARENA algorithm is one of those algorithms. As we
show ARENA has very good performance and is a very accurate especially if
we use a feed forward neural network.

Face recognition technology has come a long way in the last twenty years.
Today, machines are able to automatically verify identity information for
secure transactions, for surveillance and security tasks, and for access control
to buildings. These applications usually work in controlled environments and
recognition algorithms that can take advantage of the environmental
constraints to obtain high recognition accuracy. However, next generation
face recognition systems are going to have widespread application in smart
environments, where computers and machines are more like helpful
assistants. A major factor of that evolution is the use of neural networks in
face recognition. A different filed of science that also is very fast becoming
more and more efficient, popular and helpful to other applications.

The combination of these two fields of science manage to achieve the goal of
computers to be able to reliably identify nearby people in a manner that fits
naturally within the pattern of normal human interactions. '""They must not

require special interactions and must conform to human intuitions about

Jornal of Al-Turath Univeresity College Issue.19 (142)

when recognition is likely. This implies that future smart environments

should use the same modalities as humans, and have approximately the same

limitations. These goals now appear in reach however, substantial research

remains to be done in making person recognition technology work reliably, in

widely varying conditions using information from single or multiple

modalities.

-References

The references in the report have the following format. [Letter for section,

number of reference]. B for bibliography, P for papers, I for Internet, and O

for other documentation.

Bibliography

1. Pattern Recognition Using Neural Networks: Theory and Algorithms for
engineers and Scientists, Carl G. Looney, 1997 Oxford University press.

2. Image Processing : The Fundamentals, Petrou Maria, 1999, John Wiley,

3. Introduction to Algorithms, Thomas H. Cromen, Charles E. Leiserson,
Ronald . Rivest 1994, MIT press.

4. Fundamentals of Artificial Neural Networks, Mohamad H Hassoun, 1995,
MIT press.

5. Theory and applications of Neural Networks, Taylor J.G. and Mannion
C.L.T. 1990.

6. Introduction to Neural & Cognitive Modelling, Levine D.S. 1991

7. Lecture notes from: Synchronous Concurrent Algorithms, Mathew J.
Pool. University of Swansea. - 1999,

8. Lecture notes from: Applications of Artificial Intelligence, Dr J. Grant.
University of Swansea. - 1999,

9. Lecture notes from: Neural Networks. Dr T. Windeatt. University of
Surrey. - 1999.

Jornal of Al-Turath Univeresity College Issue.19 (143)

Papers:

1.

High Performance Memory Based Face Recognition for Visitor
Identification, Terence Sim, Shumeet Baluja, Rahul Sukthankar, Mathew
D. Mullin

Face Recognition: A Convolutional Neural Network Approach, Steve
Lawrence, C. Lee Giles, Ah Chung Tsoi, Andrew D. Back, IEEE
Transactions on Neural Networks, Volume 8, Number 1, pp. 98-113, 1997.
Face Recognition with Multi-Layer Perceptrons,Erik Hjelmés and Jorn
Wroldsen , Department of Electrical Engineering and Science Gjovik
College.

Face Recognition in Dynamic Scenes, Stephen McKenna, Shaogang Gong
and Yogesh Raja, Machine Vision Laboratory, Department of Computer
Science Queen Mary and Westfield College.

Neural Network Based Face Recognition, Henry A. Rowley, Shumeet
Baluja and Takeo Kanade, IEEE.

Face recognition: A hybrid neural network approach, S. Lawrence, C.
Giles, A. Tsoi, A. Back, Technical report UMIACS-TR-96-16, University
of Meriland, 1996

WEB

1.

http:wa.cs.cmu.edulgtg_fcs.cmn.edu!user!avrim!wwwr‘Ml.,%ﬂhce home

A e A S e e e ———————

work.html

2. http://www.mic.atr.co.ip/events/fg98/

3. http://www.justresea reh.com/Default.himl

4, http://www.ai.mit.edu/projects/cbclweb-projects-

html/beymer/beymer.html
http://vismod.www.media.mit.edu/tech-reports/TR-516/nodel5.html

http :/iwww.mathworks.com/products/

http://www.students.cs.uu.nl/~jcgronde/Scri ptie/am7.html

Jornal of Al-Turath Univeresity College Issue.19 (144)

8. htip://www.mit.edu/

9. http:Hali.www.media.mit.edu!confcrencesffggﬁffggf»-nld.html

Other documentation

1. History of neural networks, Gregory Tambasis, 1999, (submitted for
history of computation) University of Wales, Swansea.

