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Abstract: 
    Early trust frameworks relied on heuristic or graph-theoretic rules (e.g., 

EigenTrust, TrustRank) but often suffered from brittle propagation 

semantics and limited adaptability to dynamic behaviors. In recent years, 

data-driven approaches—particularly graph neural networks (GNNs), 

attention-based models, and hybrid deep learning frameworks—have 

catalyzed significant advances in trust evaluation by learning the latent 

representation of trust features and propagation patterns directly from data. 

This review presents a comprehensive survey of network trust research, 

encompassing foundational definition and taxonomies, classical 

computational methods, machine learning and deep learning innovations 

(with emphasis on GNNs and attention mechanisms), evaluation protocols 

and datasets, key applications (social recommender systems, IoT security, 

blockchain, and fraud detection), as well as ongoing challenges (data 

sparsity dynamic adaptation, explainability, and robustness). Network trust 

quantifies the confidence in relationships among entities (e.g., users, 

devices, organizations) in interconnected systems, ranging from social 

networks to the Internet of Things (IoT) and peer-to-peer (P2P) 

environments. We conclude by outlining promising research directions, 

such as self-supervised trust representation learning, lifelong adaptation, 

explainable trust frameworks, privacy-preserving trust computation, and 

multimodal trust fusion, to guide future work toward robust, scalable, and 

interpretable trust mechanisms. This review synthesizes the current state of 

the art in network trust, providing researchers and practitioners with a 

structured roadmap of methodologies, datasets, applications, and future 

research directions. 
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1. Introduction 
   As digital interactions proliferate through 

social media, e-commerce, IoT devices, and 

decentralized recommendations, there is a 

need for resilience against malicious 

behaviors. In networked contexts, trust is 

typically defined as a measure of how much a 

trustor believes a trustee will behave 

according to certain expectations (e.g., 

honesty, reliability, integrity) based on past 

interactions, endorsements, or observed 

behaviors [1],[2]. 

Traditional trust models-such as reputation 

systems in P2P networks-laid the groundwork 

by aggregating local feedback and 

propagating trust metrics via graph traversals 

(e.g., eigentrust, TrustRank). However, these 

systems often struggled with adversarial 

manipulations (e.g., Sybil attacks), lacked 

adaptability to rapidly evolving networks, and 

depended heavily on preset heuristics instead 

of data-driven learning [3],[4].  

The advent of machine learning, particularly 

deep learning, has revolutionized trust 

modeling by enabling end-to-end training of 

trust predictors from raw network data. Graph 

Neural Networks (GNNs), which leverage 

message passing and neighborhood 

aggregating, can capture complex relational 

patterns and trust propagation semantics. 

Meanwhile, attention-based architectures 

allow differential weighting of neighbor 

contributions, improving robustness to noisy 

or malicious links. These deep models have 

demonstrated superior performance on large-

scale, real-world trust public trust datasets and 

open new avenues for dynamic, interpretable, 

and multi-source trust evaluation [3],[4]. 

Despite rapid progress, major challenges 

persist: (1) data scarcity and cold-start issues 

limit model training when trust relationships 

are sparse; (2) dynamic adaptation is required 

to update trust scores in real time as network 

topologies evolve; (3) explainability is critical 

in high-stakes contexts (e.g., finance, 

healthcare) but often lacking in black-box 

deep models; and (4) adversarial robustness 

remains an open problem, as trust networks 

are susceptible to collusion and fake 

endorsements. Addressing these challenges 

requires interdisciplinary efforts spanning 

graph representation learning, explainable AI, 

secure multi-party computation, and 

multimodal data fusion. This review 

synthesizes the current state of the art in 

network trust, providing researchers and 

practitioners with a structured roadmap of 

methodologies, datasets, applications, and 

future research directions. We surveyed 

computational trust in networks with 

emphasis on classical methods (heuristics, 

graph-theoretic, probabilistic) and learning-

based models (ML, GNNs, Transformers). 

 

2. Foundations of Network Trust 

2.1 Definition and Taxonomies 
   Trust has been studied in sociology, 

psychology, and economics long before its 

formalization in network computing. In 

networked systems, trust typically refers to a 

quantitative or qualitative measure-often a 

real-valued score-reflecting a trustor's 

confidence in a trustee's reliability or integrity 

based on direct interactions, endorsements 

from others, or inferred behaviors from the 

network topology. “To clarify the landscape, 

Table 1 compares how different trust 

representations and model families perform 

along six practical dimensions: adaptability to 

dynamics, interpretability, robustness to 

adversarial noise, uncertainty handling, data 

requirements, and scalability. 
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Table 1: Trust Representation comparison 
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Binary trust {0,1} 

decisions 

Low High Low–

Medium 

Weak Low High 

Continuous 

trust 
score ∈ 

[0,1] 

Medium Medium Medium Medium–

High 

Medium High 

Heuristic / 

Rule-based 

EigenTru-

st, 

TrustRank 

Low–-

Medium 

High Medium Low Low High 

Graph-

theoretic 

PageRank-

like, 

flow/path 

Medium Medium Medium Low–

Medium 

Low–

Medium 

High 

Probabilistic 

/ Bayesian 

Subjective 

Logic, 

Bayesian 

trust 

Medium Medium–

High 

Medium High Medium Medium 

Feature-

based ML 

LR, RF, 

SVM, 

XGBoost 

Medium Medium Medium Medium Medium–

High 

High 

Deep 

Learning 

(non-graph) 

MLP/ 

CNN on 

features 

Medium Medium Medium Medium High Medium–

High 

GNN / 

Attention 

TrustGNN, 

KGTrust, 

TrustGu-

ard 

High Medium 

partially 

explainab-

le) 

Relative-

ly High 

Medium–

High 

High Medium–

High 

 

Researchers classify trust along several dimensions:  

 

 Direct vs. Indirect Trust: 

o Direct trust is computed from first-person 

experiences (e.g., user A rates user B 

positively based on a completed transaction). 
 

o Indirect trust (or inferred trust) aggregates 

trust recommendations via intermediate nodes 

(e.g., A trusts C because A trusts B and B 

trusts C, subject to decay or confidence 

adjustments) [2]. 
 
 

 

 Static vs. Dynamic Trust: 

o Static trust assumes trust relationships are 

relatively stable over time, suitable for 

environments with infrequent interaction 

changes. 

o Dynamic trust continuously updates trust 

scores as new interactions occur, accounting 

for temporal factors (e.g., recent misbehavior 

might rapidly decrease trust)[3]. 

o  
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o Binary vs. Continuous Trust: 

o Binary models classify entities as 

“trustworthy” or “untrustworthy,” often based 

on thresholded scores. 

o Continuous models assign a real-valued 

trust score (e.g., on a [0,1] scale), enabling 

finer-grained differentiation among trustees 

[2]. 

We categorize traditional trust models by 

abstraction level and methodology (Table 2): 

heuristic/rule-based [1],[2], graph-theoretic 

[1],[2], probabilistic/Bayesian [8], feature-

based ML [8], and deep learning 

(GNN/attention) [5],[6]. 

 
 

Table 2: Traditional Trust Models 

Method Pros Cons 

Heuristic / Rule-based Simple, transparent, fast Fragile to change; easy to game 

Graph-theoretic Scalable; no labels needed Popularity ≠ trust; topology bias 

PageRank-like 

(EigenTrust/TrustRank) 

Stable global scores; noise 

damping 

Needs seeds; adapts slowly 

Path / Flow aggregation Captures transitivity; explainable 

paths 

Path explosion; shortcut attacks 

Local k-NN / Majority Simple; tunable (k) Weak in sparsity; echo chambers 

Probabilistic / Bayesian Uncertainty-aware; incremental Prior-sensitive; heavier at scale 

Subjective Logic Rich belief/uncertainty semantics Operator/parameter sensitive 

Dempster–Shafer Handles conflicting evidence Expensive at high conflict 

Fuzzy Logic Human-readable; smooth 

vagueness 

Subjective tuning; scalability 

varies 

Matrix Factorization Works with sparsity; latent traits Cold-start;low interpretability 

Game-theoretic / Incentive Attack-aware by design Needs accurate utility models 

Temporal Filtering Adapts quickly; denoises May forget long-term evidence 

 

 

Figure 1: provides a compact overview of 

the workflow: inputs , preprocessing , 

GNN model then evaluation metrics, 

which summarize how move from data to 

results. 
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Shows inputs preprocessing model metrics 

Figure 1: GNN workflow 



Journal of Kerbala University, Vol. 22, Issue 4, December , 2025 
 

39 

2.2 Key Concepts  
Several fundamental concepts underlie trust 

computation: 

 Trust propagating: the mechanism by 

which trust scores spread through the 

network. Simple transitive rules (e.g., 

trust(A→C) = trust(A→B) × trust(B→C)) 

often lead to overestimation or amplification 

of errors [1]. Advanced methods introduce 

decay factors, probabilistic propagation, or 

energy-based flow to limit trust dilution over 

multiple hops [5].  

 Trust Aggregating: combining multiple 

trust evidences, such as direct feedback, 

group endorsements, and feature-based 

scores, into a single consolidated trust value. 

Heuristic methods often employ weight 

averaging or maximum selectors, whereas 

data-driven models learn aggregating 

functions (e.g., attention weights in GNNs) 

that dynamically adjust to the context. For 

example, attention-based trust models assign 

higher weights to neighbors with stronger 

reputations or more relevant features, 

improving robustness against noisy edges [7]. 

 Trust Dynamics: Because trust 

relationships evolve, especially in highly 

active network models, models must account 

for temporality. Techniques include temporal 

decay functions (older interactions contribute 

less), sliding windows of recent behaviors, or 

explicit recurrent models (e.g., temporal 

GNNs) to capture evolving trust patterns. 

Trust Guard, for instance, uses a temporal 

attention layer to capture sequence 

dependencies in trust evolution while 

defending against temporal attacks [8]. 
 

 

3. Traditional Trust 

Computation Methods  
   Before the rise of data-driven learning, trust 

computation primarily relied on heuristics, 

graph flows, and statistical reasoning. 

 Below, we summarize key classical 

approaches. 

 

3.1 Heuristic and Reputation 

Systems 
   Eigen Trust [1] (Kamvar, Schlosser, & 

Garcia-Molina, 2003) computes global 

reputation scores in P2P networks by 

normalizing local trust ratings (i.e., signed 

counts of satisfactory or unsatisfactory 

transactions) and iteratively propagating them 

via power iteration, analogous to PageRank-

until convergence. Each peer aggregates 

normalized feedback from neighbors, forming 

a probability distribution over trustees; 

repeated propagation yields global trust 

vectors that mitigate malicious peers through 

global consensus. Eigen Trust effectively 

reduces inauthentic file sharing (e.g., free-

riding) but assumes an honest majority and 

requires a seed set of pre-trusted nodes for 

stability. 

TrustRank [2] (Gyöngyi, Garcia-Molina, & 

Pedersen, 2004) was developed to combat 

web spam by semi-automatically selecting a 

small set of reputable "seed" pages labeled by 

experts. Trust is then propagated to 

neighboring pages via a modified PageRank 

process with a high teleportation probability 

back to the seed set. Pages closer in link 

distance to trustworthy seeds inherit higher 

trust, while distant pages accumulate less. 

TrustRank significantly reduces link-spam 

influence but depends on a carefully chosen 

seed set to avoid bias and requires periodic 

reselection as the web evolves. 

CredibleRank and Anti-TrustRank extend 

TrustRank's framework by integrating topical 

relevance (e.g., Topical TrustRank uses topic-

sensitive teleportation) or propagating distrust 

from known spam sources. These extensions 

aim to improve spam detection in specialized 

domains (e.g., political blogs, e-commerce 

reviews) but still require manual seed curation 

and struggle with dynamically changing link 

patterns. 

 

3.2 Graph-based Probabilistic 

Models 
   Probabilistic trust models treat trust as a 

random variable with a probability 

distribution. Bayesian Trust Models use 

Bayes's theorem to update trust beliefs upon 

observing new interactions: 

Here, priors P(tA→B) may derive from initial 

ratings or domain knowledge, while 

P(evidence∣trust) models likelihoods of 

observed behaviors (e.g., positive/negative 
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feedback counts). Though Bayesian models 

quantify uncertainty explicitly, they require 

careful prior selection and can be 

computationally intensive for large graphs-

subjective logic extends Bayesian trust by 

representing trust opinions as triplets (b,d,u) 

(b,d,u)(b,d,u) denoting belief, disbelief, and 

uncertainty, respectively, with operators for 

combining opinions, but its complexity limits 

real-time scaling. 

 

 4. Machine Learning and Deep 

learning Approaches  
   Data-driven methods have transformed  
 

trust computation by automating feature 

 extraction and modeling complex 

propagation patterns. We categorize these into 

classic machine learning, deep neural 

networks (DNNs), and Graph Neural 

Networks (GNNs) with attention[8]. 
 

 

4.1 Classic Machine Learning 

Models 
    In classic machine learning (ML) 

approaches, trust evaluation is framed as 

either a binary classification problem (trust 

versus distrust) or a regression problem 

(predicting continuous trust scores). Input 

features typically include: 

 interaction-based features, such as the number 

of positive/negative transactions, the recency 

of the last interaction, and the number of 

mutual connections; 

 Features of a textual nature, such as sentiment 

polarity or topic distributions, can be found in 

user reviews, comments, or emails. 

 Network structural features, such as local 

clustering coefficients, shortest path lengths, 

Katz scores, and node centrality measures. 

Models such as logistic regression, decision 

trees, random forests, and gradient boosting 

(e.g., XGBoost) learn to predict trust based on 

historical, labeled relations. Unsupervised 

methods, such as clustering or anomaly 

detection, identify outliers or anomalous 

subgraphs (e.g. dense clusters of nodes with 

low trust who endorse each other) to flag 

potential collusion or denial-of-service 

attacks.  

Although classic ML offers more flexibility 

than heuristics, it has limitations. 

1. Manual feature engineering: Handcrafting 

relevant features is time-consuming and 

domain-specific. 

2. These models cannot inherently propagate 

trust signals beyond immediate 

neighborhoods (i.e. they lack inductive graph 

learning capability). 

3. Scalability constraints: Constructing large 

feature matrices and training on massive 

graphs can be expensive. 

 
 

4.2 Deep Neural Networks (DNNs) 
   Deep learning methods initially applied 

feed-forward neural networks or CNNs of 

transformed feature vectors representing user 

pairs (e.g., concatenated user profiles, 

interaction histories, and network metrics). By 

stacking nonlinear layers, DNNs capture 

complex interactions among features, often 

outperforming shallow classifiers. For 

instance, early work in e-commerce trust 

prediction used DNNs to learn latent patterns 

from combined rating histories and user 

demographics. However, DNNs ignore the 

explicit graph topology, treating each pair 

independently and failing to leverage 

neighborhood information beyond engineered 

features [8].  
 

4.3 Graph Neural Networks and 

Attention-Based Models 
   Graph Neural Networks (GNNs) [5] unify 

propagation and representation learning by 

operating directly on graph structures. Trust 

evaluation models often incorporate edge 

asymmetry (trust is rarely symmetric) and 

multi-hop propagation patterns into their 

aggregation functions. Notable GNN-based 

trust models are summarized in recent deep 

trust models: attention-based GNNs [6], 

TrustGNN [3], KGTrust [4], TrustGuard [5], 

and Transformer/Hybrid approaches [5] in 

Table 3, comparing datasets, performance, 

robustness, and computation. 
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Table 3: deep trust model comparison datasets, performance, robustness, and computation. 

Model Typical datasets Reported 

gains (vs. 

traditional) 

Robustness 

under 

attack 

Params / 

Compute 

Notes (what drives 

performance) 

Attention-based 

NN 

Epinions, 

CiaoDVD 

↑ AUC-

ROC/PR, ↑ 

P@K 

(moderate) 

Medium 

(filters 

noisy 

neighbors) 

Medium Learns to weight 

neighbors; depends on 

feature quality. 

TrustGNN Epinions, 

CiaoDVD 

↑↑ AUC-

ROC/PR, ↑ 

P@K 

(consistent) 

Medium–

High 

(multi-hop 

smoothing) 

Medium–

High 

Message passing 

captures 

propagation/asymmetry; 

strong all-rounder. 

KGTrust SIoT / hetero 

graphs 

↑ AUC-

ROC/PR in 

sparse/noisy 

links 

Medium–

High 

(semantic 

context 

helps) 

High Adds knowledge-graph 

semantics; needs curated 

KG and memory. 

TrustGuard Epinions 

(temporal), others 

↑↑ AUC-

PR/P@K 

esp. over 

time 

High 

(spatial 

defense + 

temporal 

attention) 

High Robust to 

injected/malicious edges; 

higher tuning & training 

cost. 

Transformer / 

Hybrid 

Custom/large 

graphs 

↑ AUC-PR 

on long-

range deps 

Medium 

(depends 

on setup) 

High–

Very 

High 

Captures global context; 

quadratic attention can 

limit scale. 

 

 

4.4 Transformer-based and Hybrid 

Trust Models 
   Transformers push attention beyond a 

node’s immediate neighbors, letting the model 

learn long-range dependencies that classical 

methods and shallow GNNs often miss. In 

trust graphs, this means they can naturally 

capture multi-hop endorsement chains, 

coordinated or collusive patterns, and cross-

community signals—without hand-crafted 

propagation rules. Two main design lines 

have emerged. The first is graph-

Transformers, which replace or augment 

message passing with global self-attention 

applied to node/edge embeddings (often using 

sparse attention or structural/positional 

encodings such as Laplacian features or 

relative positions). The second is hybrid 

models that keep local GNN aggregation but 

add global Transformer blocks for mixing 

(e.g., GNN→Transformer or 

Transformer→GNN). For temporal trust, 

sequence-aware variants (time-decay kernels, 

time positional codes) track how trust evolves 

and reduce leakage in snapshot datasets. In 

multimodal cases (text reviews + graph), 

cross-modal attention fuses textual evidence 

with structure to down-weight noisy 

neighbors and popularity bias. 

 

5. Evaluation Frameworks and 

Datasets 

5.1 Dataset Characteristics & 

Diagnostics 
  Our datasets are sparse, snapshot-based, and 

often positively imbalanced; in some cases, 

“trust” is only a proxy derived from 

interactions. These factors can bias results 

toward popular nodes and overstate 
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performance on the majority class. We 

address this by reporting PR-AUC with 

confidence intervals, using time-aware or 

stratified splits, sanitizing graphs, 

documenting label mappings, and keeping 

proxy-trust results separate from explicit-trust 

datasets. Table 4 summarizes the structural 

properties of the trust graphs we use: size, 

sparsity, temporal dynamics, and known 

noise/quirks, because these factors strongly 

affect model design. 

Overview. Let nnn be the number of users 

(nodes) and mm the number of directed trust 

edges. Graph density δ= 
m

n(n−1)
  (no self-

loops) quantifies sparsity. 

 
  

Table 4: Structural properties of the trust graphs 
 

Dataset 

N
o

d
e 

(n
) 

E
d

g
es

 (
m

) 

D
en

si
ty

 (
δ
 )

 

T
im

es
ta

m
p

s 

T
ru

st
 l

ab
el

 t
y

p
e 

S
p

ar
si

ty
 n

o
te

s 

A
n

n
o

ta
ti

o
n

 

re
li

ab
il

it
y

 
/ 

k
n

o
w

n
 n

o
is

e 

E
p
in

io
n
s 

(s
ig

n
ed

 

w
h
o

-t
ru

st
s-

w
h
o
m

) 
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1,8

28 

841,372 4.84×10⁻⁵ Snaps

hot 

(2003) 

Explicit 

(trust & 

distrust) 

Highly 

sparse,  
Some releases contain 

self-loops; snapshot 

only (risk of temporal 

leakage).  

E
p
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n
s 

(u
n
si
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n
ed

, 

so
c-

E
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n
s1

) 75,

87

9 

508,837 8.84×10⁻⁵ Snaps

hot 

(2003) 

Explicit 

(trust 

only) 

Highly 

sparse 
Unsigned variant; 

often used for link 

prediction; snapshot 

only.  

C
ia

o
D

V
D

 

(t
ru

st
) 

4,6

58 

40,133 1.85×10⁻³ Year 

tags 

(often 

treated 

static) 

Explicit Sparse, 

but 

denser 

than 

Epinions 

Moderate size; 

connectivity better 

than Epinions.  

A
d
v
o
g
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o
 

(d
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el
o
p
er

 t
ru

st
) 

6,5

41 

51,127 1.20×10⁻³ Multip

le 

snapsh

ots 

(often 

static) 
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(multi-

level) 

Sparse 

Weighted, directed; 

level mapping choices 

can affect labels.  

P
G

P
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f 
T
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14,

36

7

→

31,

52

4 

37,900

→168,5

59 

~1.8×10⁻⁴

→1.7×10

⁻⁴ 

Strong 

tempo

ral 

signal 

Explicit 

(cert/sig

nature) 

Sparse, 

evolving 

Good for temporal 

studies; care with 

versioning/duplicates.  

T
w
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r 
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o
w

er
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(p
ro

x
y
) 

41,

65

2,2

30 

1,468,36

4,884 

8.46×10⁻⁷ Clear 

tempo

ral 

evolut

ion 

Implicit 

/ proxy 

(follow/

RT) 

Extremel

y sparse 

at scale 
Proxy ≠ trust: 

popularity bias; must 

flag label provenance.  
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5.2 Evaluation Metrics 
   In practice, trust models are judged on 

predictive performance, ranking quality, 

robustness, efficiency, and interpretability—

plus domain fit in high-stakes settings [5]. 

 Regression metrics. For continuous trust 

scores, report MSE, MAE, and RMSE to 

quantify error against ground truth. 

 Classification metrics. When trust is binarized 

(trust vs. distrust), use precision, recall, F1-

score, and accuracy. 

 Ranking metrics. Use AUROC, AUPRC, and 

Precision to check whether highly trusted 

nodes are ranked above untrusted ones. 

 Robustness metrics. Simulate Sybil/collusion 

attacks (e.g., injecting malicious edges) and 

track trust degradation, false-positive rates, or 

attack success rates. 

 Computational efficiency. Report 

training/inference time and memory footprint, 

which matter on graphs with millions of 

nodes and edges. 

 Explain ability and interpretability. Combine 

user studies and model probes (e.g., 

inspecting attention weights in GNNs) to 

assess transparency. In high-stakes domains 

(healthcare, finance), expert review verifies 

that aggregated trust aligns with domain 

knowledge. In SIoT scenarios, for example, 

experts check whether device trust scores 

reflect realistic reliability and security 

requirements. 

 

6. Applications of Network Trust 

6.1 Social Recommender Systems 
  Trust-aware recommenders use user–user trust 

to weight neighbor contributions when 

predicting preferences. In collaborative 

filtering (CF), the user–item matrix is 

augmented with trust links; propagation over 

these links helps with sparsity and cold-start 

by borrowing signal from indirectly trusted 

neighbors [9]. 

 Trust-aware matrix factorization. Add a trust 

regularizer that discourages large divergences 

between the latent factors of trusted users, 

improving rating prediction when explicit 

ratings are scarce. 

 

 

 

 GNN-based trust recommenders (e.g., 

GraphRec, TrustGNN). Learn joint user–item 

embeddings by propagating trust signals 

alongside rating interactions, often 

outperforming classic baselines (e.g., BPR, 

TrustSVD) on Epinions and CiaoDVD. 

 Hybrid attention models. Fuse review-text 

sentiment (from CNNs/Transformers) with 

structural trust embeddings via multi-head 

attention to produce more personalized 

rankings. 

Empirical pattern. Compared with rating-only 

models, trust-based systems typically achieve 

higher Precision@K and lower RMSE, 

especially under high sparsity (e.g., <5% 

observed ratings). Caveats. They depend on 

reliable trust data, and capturing temporal 

trust dynamics remains challenging as social 

ties evolve. [9] 

 

6.2 Security and Privacy in IoT  
   In IoT networks, heterogeneous devices 

comprise [4](e.g., sensors, actuators, 

gateway)- trust computation safeguards data 

integrity, access control, and secure 

communication. Use cases involve: 

 Malicious Node Detection: SIoT trust 

models (e.g., KGTrust) integrate device 

behavior logs (e.g., abnormal data spikes, 

missing heartbeats) and external semantic 

knowledge (e.g., device metadata) into GNNs 

to predict trustworthiness. Enabling early 

blacklisting of compromised devices. 

 Secure Routing: trust-based routing 

protocols assign trust paths to avoid malicious 

or unreliable nodes in multi-hop sensor 

networks. Dynamic trust evaluation helps 

maintain the quality of service under node 

failures or jamming attacks. 

 Access Control and Authentication: trust 

scores feed into distributed access control 

mechanisms. Devices with trust above a 

threshold gain privileges, while low-trust 

nodes require additional authentication or are 

quarantined. 
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Challenges include resource constraints 

(computational and energy limitations), 

dynamic topology changes (mobile IoT 

devices), and privacy concerns (raw 

interaction logs may contain sensitive 

information). Privacy-preserving trust (via 

federated learning or homomorphic 

encryption) aims to compute trust scores 

collaboratively without exposing local data.  

 

6.3 Blockchain and Decentralized 

Systems 
   In decentralized ledgers and peer-to-peer 

energy trading platforms, trust metrics 

complement consensus mechanisms to 

improve network efficiency and security [10]: 

 Permissioned Blockchains: Use trust scores 

to rank validator nodes in delegated proof-of-

stake (DPoS) systems, ensuring that highly 

reputable nodes participate in block 

validation. 

 Decentralized Identity (DID): Trust 

evaluation frameworks feed into DID 

systems, where trust scores derived from on-

chain transaction history and off-chain 

reputation (e.g., user KYC documents) inform 

authentication and access decisions. 

 Cross-Chain Interoperability: Trust metrics 

assist in selecting reliable gateway relayers 

for asset transfers, mitigating assets' loss due 

to malicious or underperforming relayers. 

  While consensus algorithms enforce data. 

Integrity, trust scores provide an additional 

layer of security by identifying colluding or 

dishonest nodes. Integrating trust with 

blockchain requires careful design to avoid 

double-counting (trust recorded on-chain 

could be manipulated) and maintain low 

transaction overhead.    

 

6.4 Fraud Detection and 

Cybersecurity 
  Trust evaluation plays a pivotal role in 

identifying fraudulent users and malicious 

behaviors in financial networks, e-commerce 

platforms, and online marketplaces[5]: 

 Sybil and Bot Detection: GNN-based trust 

models detect Sybil nodes (multiple fake 

accounts controlled by one adversary) by 

identifying anomalous trust propagation 

patterns (e.g., densely interconnected low-

trust clusters). Robust aggregation methods 

(e.g., TrustGuard's spatial defense) mitigate 

Sybil infiltration by down-weighting 

suspicious edges. 

 Transaction Fraud: In payment networks, 

trust scores guide risk assessment. If a user's 

trust falls below a threshold, additional 

verification (e.g., two-factor authentication) is 

required before processing high-value 

transactions. 

 Fake Review and Review Spam: Trust-

based reputation systems weight user reviews 

according to reviewer trust, reducing the 

influence of fake or manipulated reviews. 

Attention-based GNNs can detect colluding 

reviewers by spotting tight clusters of 

mutually endorsing untrustworthy accounts. 

Empirical studies demonstrate that 

incorporating trust features reduces false-

positive rates in fraud detection by 15–30% 

compared to transaction-only models, while 

maintaining high recall. Yet, attackers 

continuously adapt (e.g., by creating synthetic 

trust relationships), underscoring the need for 

robust and adaptive trust frameworks.  

 

7. Challenges and Open Issues  
   Despite significant advances in trust 

modeling, several critical challenges remain 

[5],[6]: 

1. Data Sparsity and Cold-Start: Many 

networked systems have extensive explicit 

trust labels; new users or devices have no 

interaction history, making trust estimation 

difficult. Self-supervised learning (e.g., 

contrastive objectives on graph structure) 

can alleviate this by leveraging unlabeled 

data, but performance still lags when 

interactions are extremely scarce 

reseachgate.netresearchgate.net 

2. Dynamic and Evolving Networks: In real-

world environments (e.g., social media, 

IoT), trust relationships change rapidly. 

Retraining GNNs from scratch upon each 

network update is infeasible. Online or 

incremental GNN architectures (e.g., 
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temporal GNNs with memory modules) 

are necessary to support continuous 

learning, but designing stable update 

mechanisms that avoid catastrophic 

forgetting remains open. 

3. Explainability & interpretability. Deep 

models—especially graph neural networks 

(GNNs)—are often seen as black boxes. In 

high-stakes settings (e.g., healthcare IoT, 

financial services), stakeholders need 

transparent justifications for trust scores. 

Attention visualizations can show which 

neighbors influenced a decision, but 

comprehensive frameworks for 

explanation (e.g., counterfactual analyses, 

rule extraction) are still limited. 

4. Adversarial attacks & robustness. 
Malicious actors can game trust 

propagation by adding bogus edges or 

forming collusive cliques. Robust 

aggregation (e.g., defense layers, as in 

TrustGuard) and adversarial training 

mitigate some risks; however, strong, 

provable guarantees against adaptive Sybil 

or camouflage attacks are rare. 

Establishing theoretical robustness bounds 

under explicit threat models remains an 

open question. 

5. Heterogeneity & multimodality. Modern 

networks blend text, images, geolocation, 

and device telemetry with graph structure. 

Integrating these heterogeneous signals 

into a unified trust model—via multimodal 

GNNs or cross-modal attention—poses 

architectural and optimization challenges, 

especially when modalities differ in scale, 

noise, and missingness. 

6. Privacy-preserving trust computation. 
Trust estimation often touches sensitive 

data (e.g., communication logs, 

transactions). Techniques such as federated 

learning, secure multi-party computation 

(SMPC), and homomorphic encryption 

improve privacy but introduce 

computational and communication 

overhead. Designing scalable, efficient, 

privacy-aware trust protocols for large 

graphs is still unresolved. 

    Progress will require cross-disciplinary 

collaboration across graph learning, 

cryptography, human–computer 

interaction, and network security. 
 

8. Feature Research Directions 
   Based on the challenges identified, we 

propose several promising research 

directions: 

1. Self-supervised and Contrastive Learning 

for Trust: Leveraging unlabeled graph data 

via contrastive objectives, such as 

maximizing agreement between connected 

nodes and minimizing it for disconnected 

ones, can alleviate data scarcity. Graph 

contrastive learning methods (e.g., 

GraphCL)can produce robust trust 

embeddings without explicit labels; 

integrating these into trust evaluation 

frameworks may improve cold-start 

performance [3]. 

2. Continual and Lifelong Learning: 

Developing incremental GNNs that update 

trust embeddings in real time as new edges 

appear, without retraining from scratch, is 

essential for evolving networks. Memory-

augmented architectures (e.g., Graph 

Memory Networks) or dynamic graph 

transformers could provide stable 

performance while accommodating frequent 

topology changes [6]. 

3. Explainable Trust Models: Beyond 

visualizing attention weights, trust models 

should produce human-readable rationales—

e.g., “User A trusts User B because of 3 

high-quality endorsements from mutual 

connections C, D, and E.” Techniques such 

as rule extraction, counterfactual 

explanations, or concept bottlenecks can 

help translate black-box predictions into 

interpretable narratives. Research on 

combining symbolic reasoning with neural 

trust models appears promising [4]. 

4. Robust trust under adversarial threats. 
Reliability in hostile environments requires 

formal threat models, specifying a Sybil 

attacker’s budget, capabilities, and 

objectives, and provable robustness 

guarantees for trust algorithms. Adapting 

certified robustness methods from computer 

vision to GNN-based trust frameworks 

could provide theoretical assurances against 

malicious manipulations[10].  
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5.  Privacy-preserving trust computation. 
Combining federated learning with secure 

aggregation enables decentralized training 

without sharing raw data. Differential 

privacy can inject noise into local gradients 

to protect sensitive information while 

retaining utility. Future work should balance 

privacy, accuracy, and communication 

efficiency at a large scale in distributed 

settings [10].  

6. Multimodal trust fusion. Next-generation 

models should integrate heterogeneous 

signals like text sentiment, image features, 

geolocation traces, and graph topology into 

a coherent embedding. Cross-modal 

attention and multimodal Transformers can 

contextually focus on the most informative 

modality, improving trust estimation in 

domains such as e-commerce (images, 

reviews, interaction networks) and 

autonomous-vehicle networks (sensor 

telemetry, maps) [10].  

7.  Standard benchmarks and open datasets. 
The field needs large-scale, heterogeneous 

trust datasets that include timestamped 

relations, content features, and external 

knowledge, alongside standardized 

evaluation protocols (clear 

train/validation/test splits, attack-injection 

scenarios) [7]. 

8.  Beyond dyadic trust. Most approaches 

model pairwise (dyadic) trust, yet real-world 

scenarios involve group trust (e.g., the 

reliability of a device consortium) and 

contextual trust (a seller may be trustworthy 

in electronics but not apparel). Hypergraph 

neural networks and other higher-order 

models can capture group-level dynamics 

and cross-domain trust shifts [8] 

 

9. Conclusion 
   Network trust remains a cornerstone for 

secure, reliable, and personalized 

interactions in interconnected digital 

ecosystems. From early heuristic systems 

(e.g., EigenTrust, TrustRank) to cutting-edge 

GNN-based frameworks (e.g., TrustGNN, 

KGTrust, TrustGuard), researchers have 

made significant strides in modeling trust 

propagation, handling dynamic networks, 

and integrating heterogeneous data. Deep 

learning—particularly GNNs and attention-

based architectures—has unlocked the 

ability to learn latent trust representations 

directly from data, improving predictive 

accuracy and resilience to noisy or 

malicious inputs. 

Yet, critical challenges persist: data sparsity, 

dynamic adaptation, explainability, 

adversarial robustness, heterogeneity, and 

privacy concerns demand innovative 

solutions. Future research should emphasize 

self-supervised learning, continual 

adaptation, explainability, privacy-

preserving protocols, and multimodal trust 

fusion, underpinned by standardized 

benchmarks and open datasets. By 

embracing these directions, the research 

community can build trustworthy, scalable, 

and transparent trust mechanisms—laying 

the foundation for secure and reliable digital 

interactions across social networks, loT, 

blockchain, and beyond.  
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