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Abstract:

Early trust frameworks relied on heuristic or graph-theoretic rules (e.g.,
EigenTrust, TrustRank) but often suffered from brittle propagation
semantics and limited adaptability to dynamic behaviors. In recent years,
data-driven approaches—particularly graph neural networks (GNNSs),
attention-based models, and hybrid deep learning frameworks—have
catalyzed significant advances in trust evaluation by learning the latent
representation of trust features and propagation patterns directly from data.
This review presents a comprehensive survey of network trust research,
encompassing foundational definition and taxonomies, classical
computational methods, machine learning and deep learning innovations
(with emphasis on GNNs and attention mechanisms), evaluation protocols
and datasets, key applications (social recommender systems, 10T security,
blockchain, and fraud detection), as well as ongoing challenges (data
sparsity dynamic adaptation, explainability, and robustness). Network trust
quantifies the confidence in relationships among entities (e.g., users,
devices, organizations) in interconnected systems, ranging from social
networks to the Internet of Things (loT) and peer-to-peer (P2P)
environments. We conclude by outlining promising research directions,
such as self-supervised trust representation learning, lifelong adaptation,
explainable trust frameworks, privacy-preserving trust computation, and
multimodal trust fusion, to guide future work toward robust, scalable, and
interpretable trust mechanisms. This review synthesizes the current state of
the art in network trust, providing researchers and practitioners with a
structured roadmap of methodologies, datasets, applications, and future
research directions.
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1. Introduction

As digital interactions proliferate through
social media, e-commerce, IoT devices, and
decentralized recommendations, there is a
need for resilience against malicious
behaviors. In networked contexts, trust is
typically defined as a measure of how much a
trustor Dbelieves a trustee will behave
according to certain expectations (e.g.,
honesty, reliability, integrity) based on past
interactions, endorsements, or observed
behaviors [1],[2].
Traditional trust models-such as reputation
systems in P2P networks-laid the groundwork
by aggregating local feedback and
propagating trust metrics via graph traversals
(e.g., eigentrust, TrustRank). However, these
systems often struggled with adversarial
manipulations (e.g., Sybil attacks), lacked
adaptability to rapidly evolving networks, and
depended heavily on preset heuristics instead
of data-driven learning [3],[4].
The advent of machine learning, particularly
deep learning, has revolutionized trust
modeling by enabling end-to-end training of
trust predictors from raw network data. Graph
Neural Networks (GNNs), which leverage
message  passing and  neighborhood
aggregating, can capture complex relational
patterns and trust propagation semantics.
Meanwhile, attention-based architectures
allow differential weighting of neighbor
contributions, improving robustness to noisy
or malicious links. These deep models have
demonstrated superior performance on large-
scale, real-world trust public trust datasets and
open new avenues for dynamic, interpretable,
and multi-source trust evaluation [3],[4].
Despite rapid progress, major challenges
persist: (1) data scarcity and cold-start issues
limit model training when trust relationships
are sparse; (2) dynamic adaptation is required
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to update trust scores in real time as network
topologies evolve; (3) explainability is critical
in  high-stakes contexts (e.g., finance,
healthcare) but often lacking in black-box
deep models; and (4) adversarial robustness
remains an open problem, as trust networks
are susceptible to collusion and fake
endorsements. Addressing these challenges
requires interdisciplinary efforts spanning
graph representation learning, explainable Al,
secure  multi-party ~ computation,  and
multimodal data fusion. This review
synthesizes the current state of the art in
network trust, providing researchers and
practitioners with a structured roadmap of
methodologies, datasets, applications, and
future research directions. We surveyed
computational trust in networks with
emphasis on classical methods (heuristics,
graph-theoretic, probabilistic) and learning-
based models (ML, GNNs, Transformers).

2. Foundations of Network Trust

2.1 Definition and Taxonomies

Trust has been studied in sociology,
psychology, and economics long before its
formalization in network computing. In
networked systems, trust typically refers to a
quantitative or qualitative measure-often a
real-valued  score-reflecting a trustor's
confidence in a trustee's reliability or integrity
based on direct interactions, endorsements
from others, or inferred behaviors from the
network topology. “To clarify the landscape,
Table 1 compares how different trust
representations and model families perform
along six practical dimensions: adaptability to
dynamics, interpretability, robustness to
adversarial noise, uncertainty handling, data
requirements, and scalability.
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Table 1: Trust Representation comparison
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— o] 9 = ) [¢B] >
Category 8 5 8 & S 5 = 2 £ =
< 8 E = D5 = = S
2 E == = 222 | 82 S = =
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Binary trust | {0,1} Low High Low— Weak Low High
decisions Medium
Continuous | score € | Medium | Medium | Medium | Medium— | Medium | High
trust [0,1] High
Heuristic /| EigenTru- | Low— | High Medium | Low Low High
Rule-based | st, Medium
TrustRank
Graph- PageRank- | Medium | Medium | Medium | Low-— Low-— High
theoretic like, Medium | Medium
flow/path
Probabilistic | Subjective | Medium | Medium- | Medium | High Medium | Medium
/ Bayesian Logic, High
Bayesian
trust
Feature- LR, RF, | Medium | Medium Medium | Medium | Medium- | High
based ML SVM, High
XGBoost
Deep MLP/ Medium | Medium Medium | Medium | High Medium-—
Learning High
CNN on
non-graph
(non-graph) features
GNN /| TrustGNN, | High Medium | Relative- | Medium-— | High Medium-—
Attention KGTrust, partially ly High | High High
TrustGu- explainab-
ard le)

Researchers classify trust along several dimensions:

« Direct vs. Indirect Trust:

o Direct trust is computed from first-person
experiences (e.g., user A rates user B
positively based on a completed transaction).

« Static vs. Dynamic Trust:

o Static trust assumes trust relationships are
relatively stable over time, suitable for
environments with infrequent interaction
changes.
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o Indirect trust (or inferred trust) aggregates
trust recommendations via intermediate nodes
(e.g., A trusts C because A trusts B and B
trusts C, subject to decay or confidence
adjustments) [2].

o Dynamic trust continuously updates trust
scores as new interactions occur, accounting
for temporal factors (e.g., recent misbehavior
might rapidly decrease trust)[3].

o
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o Binary vs. Continuous Trust:

o Binary models classify entities as
“trustworthy” or “untrustworthy,” often based
on thresholded scores.

o Continuous models assign a real-valued
trust score (e.g., on a [0,1] scale), enabling

We categorize traditional trust models by
abstraction level and methodology (Table 2):
heuristic/rule-based [1],[2], graph-theoretic
[1].[2], probabilistic/Bayesian [8], feature-
based ML [8], and deep learning
(GNN/attention) [5],[6].

finer-grained differentiation among trustees

[2].

Table 2: Traditional Trust Models

Method Pros Cons

Heuristic / Rule-based Simple, transparent, fast Fragile to change; easy to game

Graph-theoretic Scalable; no labels needed Popularity # trust; topology bias

PageRank-like Stable global scores; noise | Needs seeds; adapts slowly
(EigenTrust/TrustRank) damping

Path / Flow aggregation Captures transitivity; explainable | Path explosion; shortcut attacks

paths

Local k-NN / Majority Simple; tunable (k) Weak in sparsity; echo chambers

Probabilistic / Bayesian Uncertainty-aware; incremental Prior-sensitive; heavier at scale

Subjective Logic Rich belief/uncertainty semantics | Operator/parameter sensitive

Dempster—Shafer Handles conflicting evidence Expensive at high conflict

Fuzzy Logic Human-readable; smooth | Subjective tuning; scalability

vagueness varies

Matrix Factorization Works with sparsity; latent traits Cold-start;low interpretability

Game-theoretic / Incentive Attack-aware by design Needs accurate utility models

Temporal Filtering Adapts quickly; denoises May forget long-term evidence

which summarize how move from data to
results.

Figure 1: provides a compact overview of
the workflow: inputs , preprocessing |,
GNN model then evaluation metrics,

Shows inputs

reprocessin model i
prep g ode metrics

Figure 1: GNN workflow
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2.2 Key Concepts

Several fundamental concepts underlie trust
computation:

e Trust propagating: the mechanism by
which trust scores spread through the
network. Simple transitive rules (e.g.,
trust(A—C) = trusttA—B) x trust(B—C))
often lead to overestimation or amplification
of errors [1]. Advanced methods introduce
decay factors, probabilistic propagation, or
energy-based flow to limit trust dilution over
multiple hops [5].

e Trust Aggregating: combining multiple
trust evidences, such as direct feedback,
group endorsements, and feature-based
scores, into a single consolidated trust value.
Heuristic methods often employ weight
averaging or maximum selectors, whereas
data-driven  models learn  aggregating
functions (e.g., attention weights in GNNs)
that dynamically adjust to the context. For
example, attention-based trust models assign
higher weights to neighbors with stronger
reputations or more relevant features,
improving robustness against noisy edges [7].
e Trust Dynamics: Because trust
relationships evolve, especially in highly
active network models, models must account
for temporality. Techniques include temporal
decay functions (older interactions contribute
less), sliding windows of recent behaviors, or
explicit recurrent models (e.g., temporal
GNNs) to capture evolving trust patterns.
Trust Guard, for instance, uses a temporal
attention layer to capture sequence
dependencies in trust evolution while
defending against temporal attacks [8].

3. Traditional Trust
Computation Methods

Before the rise of data-driven learning, trust
computation primarily relied on heuristics,
graph flows, and statistical reasoning.
Below, we summarize key
approaches.

classical

3.1 Heuristic and Reputation

Systems
Eigen Trust [1] (Kamvar, Schlosser, &
Garcia-Molina, 2003) computes global
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reputation scores in P2P networks by
normalizing local trust ratings (i.e., signed
counts of satisfactory or unsatisfactory
transactions) and iteratively propagating them
via power iteration, analogous to PageRank-
until convergence. Each peer aggregates
normalized feedback from neighbors, forming
a probability distribution over trustees;
repeated propagation yields global trust
vectors that mitigate malicious peers through
global consensus. Eigen Trust effectively
reduces inauthentic file sharing (e.g., free-
riding) but assumes an honest majority and
requires a seed set of pre-trusted nodes for
stability.

TrustRank [2] (Gyodngyi, Garcia-Molina, &
Pedersen, 2004) was developed to combat
web spam by semi-automatically selecting a
small set of reputable "seed" pages labeled by
experts. Trust is then propagated to
neighboring pages via a modified PageRank
process with a high teleportation probability
back to the seed set. Pages closer in link
distance to trustworthy seeds inherit higher
trust, while distant pages accumulate less.
TrustRank significantly reduces link-spam
influence but depends on a carefully chosen
seed set to avoid bias and requires periodic
reselection as the web evolves.
CredibleRank and Anti-TrustRank extend
TrustRank's framework by integrating topical
relevance (e.g., Topical TrustRank uses topic-
sensitive teleportation) or propagating distrust
from known spam sources. These extensions
aim to improve spam detection in specialized
domains (e.g., political blogs, e-commerce
reviews) but still require manual seed curation
and struggle with dynamically changing link
patterns.

3.2 Graph-based Probabilistic

Models

Probabilistic trust models treat trust as a
random variable with a probability
distribution. Bayesian Trust Models use
Bayes's theorem to update trust beliefs upon
observing new interactions:
Here, priors P(ta_g) may derive from initial
ratings or domain knowledge, while
P(evidence|trust) models likelihoods of
observed behaviors (e.g., positive/negative
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feedback counts). Though Bayesian models
quantify uncertainty explicitly, they require
careful  prior selection and can be
computationally intensive for large graphs-
subjective logic extends Bayesian trust by
representing trust opinions as triplets (b,d,u)
(b,d,u)(b,d,u) denoting belief, disbelief, and
uncertainty, respectively, with operators for
combining opinions, but its complexity limits
real-time scaling.

4. Machine Learning and Deep

learning Approaches

Data-driven methods have transformed
trust computation by automating feature
extraction and modeling complex
propagation patterns. We categorize these into
classic machine learning, deep neural
networks (DNNs), and Graph Neural
Networks (GNNs) with attention[8].

4.1 Classic Machine Learning

Models

In classic machine learning (ML)
approaches, trust evaluation is framed as
either a binary classification problem (trust
versus distrust) or a regression problem
(predicting continuous trust scores). Input
features typically include:
interaction-based features, such as the number
of positive/negative transactions, the recency
of the last interaction, and the number of
mutual connections;
Features of a textual nature, such as sentiment
polarity or topic distributions, can be found in
user reviews, comments, or emails.
Network structural features, such as local
clustering coefficients, shortest path lengths,
Katz scores, and node centrality measures.
Models such as logistic regression, decision
trees, random forests, and gradient boosting
(e.g., XGBoost) learn to predict trust based on
historical, labeled relations. Unsupervised
methods, such as clustering or anomaly
detection, identify outliers or anomalous
subgraphs (e.g. dense clusters of nodes with
low trust who endorse each other) to flag

40

potential collusion or denial-of-service
attacks.

Although classic ML offers more flexibility
than heuristics, it has limitations.

1. Manual feature engineering: Handcrafting
relevant features is time-consuming and
domain-specific.

2. These models cannot inherently propagate
trust signals beyond immediate
neighborhoods (i.e. they lack inductive graph
learning capability).

3. Scalability constraints: Constructing large
feature matrices and training on massive

graphs can be expensive.

4.2 Deep Neural Networks (DNNs)

Deep learning methods initially applied
feed-forward neural networks or CNNs of
transformed feature vectors representing user
pairs (e.g., concatenated user profiles,
interaction histories, and network metrics). By
stacking nonlinear layers, DNNs capture
complex interactions among features, often
outperforming  shallow classifiers.  For
instance, early work in e-commerce trust
prediction used DNNs to learn latent patterns
from combined rating histories and user
demographics. However, DNNs ignore the
explicit graph topology, treating each pair
independently and failing to leverage
neighborhood information beyond engineered
features [8].

4.3 Graph Neural Networks and

Attention-Based Models

Graph Neural Networks (GNNs) [5] unify
propagation and representation learning by
operating directly on graph structures. Trust
evaluation models often incorporate edge
asymmetry (trust is rarely symmetric) and
multi-hop propagation patterns into their
aggregation functions. Notable GNN-based
trust models are summarized in recent deep
trust models: attention-based GNNs [6],
TrustGNN [3], KGTrust [4], TrustGuard [5],
and Transformer/Hybrid approaches [5] in
Table 3, comparing datasets, performance,
robustness, and computation.
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Table 3: deep trust model comparison datasets, performance, robustness, and computation.

Model Typical datasets Reported Robustness | Params / | Notes  (what  drives
gains  (vs. | under Compute | performance)
traditional) | attack

Attention-based Epinions, 1 AUC- | Medium Medium | Learns to weight

NN CiaoDVD ROC/PR, 1 | (filters neighbors; depends on
P@K noisy feature quality.
(moderate) | neighbors)

TrustGNN Epinions, M AUC- | Medium-— Medium— | Message passing

CiaoDVD ROC/PR, 1 | High High captures
P@K (multi-hop propagation/asymmetry;
(consistent) | smoothing) strong all-rounder.
KGTrust SloT / hetero | 1 AUC- | Medium-— High Adds knowledge-graph
graphs ROC/PR in | High semantics; needs curated
sparse/noisy | (semantic KG and memory.
links context
helps)
TrustGuard Epinions 1 AUC- | High High Robust to
(temporal), others | PR/IP@K (spatial injected/malicious edges;
esp. over | defense + higher tuning & training
time temporal cost.
attention)

Transformer / | Custom/large T AUC-PR | Medium High— Captures global context;

Hybrid graphs on long- | (depends Very quadratic attention can
range deps | on setup) High limit scale.

4.4 Transformer-based and Hybrid (e.g., GNN— Transformer or

Trust Models Transformer—GNN). For temporal trust,

Transformers push attention beyond a
node’s immediate neighbors, letting the model
learn long-range dependencies that classical
methods and shallow GNNs often miss. In
trust graphs, this means they can naturally
capture multi-hop endorsement chains,
coordinated or collusive patterns, and cross-
community signals—without hand-crafted
propagation rules. Two main design lines
have emerged. The first is graph-
Transformers, which replace or augment
message passing with global self-attention
applied to node/edge embeddings (often using
sparse attention or structural/positional
encodings such as Laplacian features or
relative positions). The second is hybrid
models that keep local GNN aggregation but
add global Transformer blocks for mixing
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sequence-aware variants (time-decay kernels,
time positional codes) track how trust evolves
and reduce leakage in snapshot datasets. In
multimodal cases (text reviews + graph),
cross-modal attention fuses textual evidence
with  structure to down-weight noisy
neighbors and popularity bias.

5. Evaluation Frameworks and
Datasets

5.1 Dataset Characteristics &
Diagnostics

Our datasets are sparse, snapshot-based, and
often positively imbalanced; in some cases,
“trust” is only a proxy derived from
interactions. These factors can bias results
toward popular nodes and overstate



Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

performance on the majority class. We
address this by reporting PR-AUC with
confidence intervals, using time-aware or
stratified splits, sanitizing graphs,
documenting label mappings, and keeping

sparsity, temporal dynamics, and known
noise/quirks, because these factors strongly
affect model design.

Overview. Let nnn be the number of users
(nodes) and mm the number of directed trust

proxy-trust results separate from explicit-trust edges. Graph density &= _m (no self-
datasets. Table 4 summarizes the structural loops) quantifies sparsit n(n-1)
properties of the trust graphs we use: size, Ps) g parsity.
Table 4: Structural properties of the trust graphs
S
o — o c 2
Dataset — s < S 3 S =22
£ = 2 s < 2 B= 2
g | & E g 3 [ 283
= =
z i a = = & I8E
& 13 841,372 4.84x10°° Snaps EXp"Cit HIgh'y Some releases contain
2,3 _ 1,8 hot (trust & | sparse, self-loops;  snapshot
EETS |28 (2003) | distrust) only (risk of temporal
STaES leakage).

s o 75, 508,837 8.84x10~° | Snaps EXp"Cit HIgh'y Unsigned variant;
ge £ 87 hot (trust sparse often used for link
2.2 |9 (2003) | only) prediction;  snapshot
GS8& only.

46 | 40,133 1.85x107 | Year Explicit | Sparse,

o 58 tags but Moderate size;

> (often denser connectivity better

oo ..

o B treated than than Epinions.

O s static) Epinions

6,5 |51,127 1.20x103 | Multip | Explicit | Sparse
= 41 le (multi-
= snapsh | level) Weighted,  directed:;

o3 ots level mapping choices

S5 (often can affect labels.

S 2 static)

s

14, | 37,900 ~1.8x10* | Strong | Explicit | Sparse,
- 36 | —168,5 | —»1.7x10 | tempo | (cert/sig | evolving
S -4
= v & rgl AL, Good for temporal
— — signal . .
o 31 studies; care  with
0 ] - - a
= versioning/duplicates.
= 52
a 4
£

= 41, | 1,468,36 | 8.46x1077 | Clear Implicit | Extremel
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= o popularity bias; must
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5.2 Evaluation Metrics
In practice, trust models are judged on
predictive performance, ranking quality,
robustness, efficiency, and interpretability—
plus domain fit in high-stakes settings [5].

« Regression metrics. For continuous trust
scores, report MSE, MAE, and RMSE to
quantify error against ground truth.

« Classification metrics. When trust is binarized
(trust vs. distrust), use precision, recall, F1-
score, and accuracy.

« Ranking metrics. Use AUROC, AUPRC, and
Precision to check whether highly trusted
nodes are ranked above untrusted ones.

« Robustness metrics. Simulate Sybil/collusion
attacks (e.g., injecting malicious edges) and
track trust degradation, false-positive rates, or
attack success rates.

« Computational efficiency. Report
training/inference time and memory footprint,
which matter on graphs with millions of
nodes and edges.

« Explain ability and interpretability. Combine
user studies and model probes (e.g.,
inspecting attention weights in GNNSs) to
assess transparency. In high-stakes domains
(healthcare, finance), expert review verifies
that aggregated trust aligns with domain
knowledge. In SloT scenarios, for example,
experts check whether device trust scores
reflect realistic reliability and security
requirements.

6. Applications of Network Trust

6.1 Social Recommender Systems
Trust-aware recommenders use user—user trust
to weight neighbor contributions when
predicting preferences. In collaborative
filtering (CF), the wuser—item matrix is
augmented with trust links; propagation over
these links helps with sparsity and cold-start
by borrowing signal from indirectly trusted
neighbors [9].

e Trust-aware matrix factorization. Add a trust
regularizer that discourages large divergences
between the latent factors of trusted users,
improving rating prediction when explicit
ratings are scarce.
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e« GNN-based trust recommenders (e.g.,
GraphRec, TrustGNN). Learn joint user—item
embeddings by propagating trust signals
alongside rating interactions, often
outperforming classic baselines (e.g., BPR,
TrustSVD) on Epinions and CiaoDVD.

« Hybrid attention models. Fuse review-text
sentiment (from CNNSs/Transformers) with
structural trust embeddings via multi-head
attention to produce more personalized
rankings.

Empirical pattern. Compared with rating-only
models, trust-based systems typically achieve
higher Precision@K and lower RMSE,
especially under high sparsity (e.g., <5%
observed ratings). Caveats. They depend on
reliable trust data, and capturing temporal
trust dynamics remains challenging as social
ties evolve. [9]

6.2 Security and Privacy in loT
In 10T networks, heterogeneous devices
comprise  [4](e.g., sensors,  actuators,
gateway)- trust computation safeguards data
integrity, access control, and secure
communication. Use cases involve:

e Malicious Node Detection: SloT trust
models (e.g.,, KGTrust) integrate device
behavior logs (e.g., abnormal data spikes,
missing heartbeats) and external semantic
knowledge (e.g., device metadata) into GNNs
to predict trustworthiness. Enabling early
blacklisting of compromised devices.

«Secure  Routing:  trust-based  routing
protocols assign trust paths to avoid malicious
or unreliable nodes in multi-hop sensor
networks. Dynamic trust evaluation helps
maintain the quality of service under node
failures or jamming attacks.

« Access Control and Authentication: trust
scores feed into distributed access control
mechanisms. Devices with trust above a
threshold gain privileges, while low-trust
nodes require additional authentication or are
quarantined.
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constraints
limitations),
loT
(raw
sensitive

Challenges include  resource
(computational and energy
dynamic topology changes (mobile
devices), and privacy concerns
interaction logs may contain

6.3 Blockchain and Decentralized

Systems

In decentralized ledgers and peer-to-peer
energy trading platforms, trust metrics
complement consensus mechanisms  to
improve network efficiency and security [10]:
 Permissioned Blockchains: Use trust scores
to rank validator nodes in delegated proof-of-
stake (DPoS) systems, ensuring that highly

reputable nodes participate in  block
validation.

e Decentralized  Identity (DID):  Trust
evaluation frameworks feed into DID

systems, where trust scores derived from on-
chain transaction history and off-chain
reputation (e.g., user KYC documents) inform
authentication and access decisions.

« Cross-Chain Interoperability: Trust metrics
assist in selecting reliable gateway relayers
for asset transfers, mitigating assets' loss due
to malicious or underperforming relayers.
While consensus algorithms enforce data.
Integrity, trust scores provide an additional
layer of security by identifying colluding or
dishonest nodes. Integrating trust with
blockchain requires careful design to avoid
double-counting (trust recorded on-chain
could be manipulated) and maintain low
transaction overhead.

6.4 Fraud Detection and

Cybersecurity

Trust evaluation plays a pivotal role in
identifying fraudulent users and malicious
behaviors in financial networks, e-commerce
platforms, and online marketplaces[5]:

« Sybil and Bot Detection: GNN-based trust
models detect Sybil nodes (multiple fake
accounts controlled by one adversary) by
identifying anomalous trust propagation
patterns (e.g., densely interconnected low-
trust clusters). Robust aggregation methods
(e.g., TrustGuard's spatial defense) mitigate
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information). Privacy-preserving trust (via
federated learning  or  homomorphic
encryption) aims to compute trust scores
collaboratively without exposing local data.

Sybil infiltration
suspicious edges.

e Transaction Fraud: In payment networks,
trust scores guide risk assessment. If a user's
trust falls below a threshold, additional
verification (e.g., two-factor authentication) is
required  before processing high-value
transactions.

e Fake Review and Review Spam: Trust-
based reputation systems weight user reviews
according to reviewer trust, reducing the
influence of fake or manipulated reviews.
Attention-based GNNs can detect colluding
reviewers by spotting tight clusters of
mutually endorsing untrustworthy accounts.

Empirical studies demonstrate that
incorporating trust features reduces false-
positive rates in fraud detection by 15-30%
compared to transaction-only models, while
maintaining high recall. Yet, attackers
continuously adapt (e.g., by creating synthetic
trust relationships), underscoring the need for
robust and adaptive trust frameworks.

by  down-weighting

7. Challenges and Open Issues
Despite significant advances in trust

modeling, several critical challenges remain

[51.[6]:

1. Data Sparsity and Cold-Start: Many
networked systems have extensive explicit
trust labels; new users or devices have no
interaction history, making trust estimation
difficult. Self-supervised learning (e.g.,
contrastive objectives on graph structure)
can alleviate this by leveraging unlabeled
data, but performance still lags when
interactions  are  extremely  scarce
reseachgate.netresearchgate.net

2. Dynamic and Evolving Networks: In real-
world environments (e.g., social media,
loT), trust relationships change rapidly.
Retraining GNNs from scratch upon each
network update is infeasible. Online or
incremental GNN architectures (e.g.,
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temporal GNNs with memory modules)
are necessary to support continuous
learning, but designing stable update
mechanisms that avoid catastrophic
forgetting remains open.

. Explainability & interpretability. Deep
models—especially graph neural networks
(GNNs)—are often seen as black boxes. In
high-stakes settings (e.g., healthcare IoT,
financial services), stakeholders need
transparent justifications for trust scores.
Attention visualizations can show which
neighbors influenced a decision, but
comprehensive frameworks for
explanation (e.g., counterfactual analyses,
rule extraction) are still limited.

. Adversarial attacks & robustness.
Malicious actors can game trust
propagation by adding bogus edges or
forming  collusive  cliques.  Robust
aggregation (e.g., defense layers, as in
TrustGuard) and adversarial training
mitigate some risks; however, strong,
provable guarantees against adaptive Sybil
or camouflage attacks are rare.
Establishing theoretical robustness bounds

8. Feature Research Directions
Based on the challenges identified, we
propose  several  promising  research
directions:
. Self-supervised and Contrastive Learning
for Trust: Leveraging unlabeled graph data
via contrastive  objectives, such as
maximizing agreement between connected
nodes and minimizing it for disconnected
ones, can alleviate data scarcity. Graph

contrastive  learning  methods  (e.g.,
GraphCL)can  produce  robust  trust
embeddings  without  explicit  labels;
integrating these into trust evaluation
frameworks may improve cold-start
performance [3].

. Continual and Lifelong Learning:

Developing incremental GNNs that update
trust embeddings in real time as new edges
appear, without retraining from scratch, is
essential for evolving networks. Memory-

augmented architectures (e.g.,, Graph
Memory Networks) or dynamic graph
transformers  could provide  stable
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. Explainable

under explicit threat models remains an
open question.

. Heterogeneity & multimodality. Modern

networks blend text, images, geolocation,
and device telemetry with graph structure.
Integrating these heterogeneous signals
into a unified trust model—via multimodal
GNNs or cross-modal attention—poses
architectural and optimization challenges,
especially when modalities differ in scale,
noise, and missingness.

. Privacy-preserving trust computation.

Trust estimation often touches sensitive
data (e.g., communication logs,
transactions). Techniques such as federated
learning, secure multi-party computation
(SMPC), and homomorphic encryption
improve privacy but introduce
computational and communication
overhead. Designing scalable, efficient,
privacy-aware trust protocols for large
graphs is still unresolved.

Progress will require cross-disciplinary
collaboration across graph learning,
cryptography, human—computer

interaction, and network security.

performance while accommodating frequent
topology changes [6].

Trust Models: Beyond
visualizing attention weights, trust models
should produce human-readable rationales—
e.g., “User A trusts User B because of 3
high-quality endorsements from mutual
connections C, D, and E.” Techniques such
as rule extraction, counterfactual
explanations, or concept bottlenecks can
help translate black-box predictions into
interpretable  narratives. Research  on
combining symbolic reasoning with neural
trust models appears promising [4].

. Robust trust under adversarial threats.

Reliability in hostile environments requires
formal threat models, specifying a Sybil
attacker’s  budget,  capabilities, and
objectives, and provable  robustness
guarantees for trust algorithms. Adapting
certified robustness methods from computer
vision to GNN-based trust frameworks
could provide theoretical assurances against
malicious manipulations[10].
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5. Privacy-preserving trust computation.
Combining federated learning with secure
aggregation enables decentralized training
without sharing raw data. Differential
privacy can inject noise into local gradients
to protect sensitive information while
retaining utility. Future work should balance
privacy, accuracy, and communication
efficiency at a large scale in distributed
settings [10].

6. Multimodal trust fusion. Next-generation
models should integrate heterogeneous
signals like text sentiment, image features,
geolocation traces, and graph topology into
a coherent embedding. Cross-modal
attention and multimodal Transformers can
contextually focus on the most informative
modality, improving trust estimation in
domains such as e-commerce (images,
reviews, interaction  networks) and
autonomous-vehicle  networks  (sensor
telemetry, maps) [10].

7. Standard benchmarks and open datasets.
The field needs large-scale, heterogeneous
trust datasets that include timestamped

relations, content features, and external
knowledge, alongside standardized
evaluation protocols (clear

train/validation/test splits, attack-injection
scenarios) [7].

8. Beyond dyadic trust. Most approaches
model pairwise (dyadic) trust, yet real-world
scenarios involve group trust (e.g., the
reliability of a device consortium) and
contextual trust (a seller may be trustworthy
in electronics but not apparel). Hypergraph
neural networks and other higher-order
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