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Abstract:

This paper presents the idea of a cascaded boundary mitigation scheme
for Pixel Value Differencing (PVD) steganography by jointly using
modulus operation and MSB preserving bit-stream adjustment to address
the falling-off-boundary issue. While the behavior of the applications of
modulus and bits stream adjustment has been studied separately, their
interaction and their performance at large scale have never been studied
together. The method was implemented in Python and tested on the full
dataset of Flickr30K (31,783 real world photographs) and a fixed payload
of ~0.95 bits/pixel. Across all the images the framework achieved an
average PSNR of 40.2dB (with a range of 34.3-45.1 dB), perfect-block rate
(successful embedding without fallback) of 94.1% (with a range of 74%-
100%), and extraction accuracy of 98.2% (100% on 28,147 images). The
average capacity loss due to the fallback mechanism was 6.4%. Detailed
results on five representative images of different texture are provided which
confirm the robustness of the method for smooth as well as highly textured
content. The approach preserves the linear O(MxN) complexity and
provides a reproducible baseline to compare the traditional and the Al
enhanced steganography techniques.
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1. INTRODUCTION

It seems highly improbable that a threat
to security that will be more serious than
data breaches could be found in the digital
landscape of the contemporary
community. 3158 incidents exposed about
1.5 billion records were exposed
worldwide in 2024 alone. While
cryptography helps to encrypt data
content, the presence of the encrypted data
is still detectable [1]. Steganography
provides a complementary technique to
hide  the  existence of  hidden
communication in innocuous looking
cover media [2], [3].

1.1. Evolution of Steganography

Techniques

Image steganography has developed
considerably from the initial spatial
domain methods. Least Significant Bit
(LSB) substitution is a type of data
embedding which replaces the least
significant bits of the pixel values [4]. The
Pixel Value Differencing (PVD) method
proposed by Wu and Tsai in 2003 [5],
overcame some of the limitations of LSB
by taking advantage of the fact that the
human visual system has low sensitivity to
changes in edge areas. PVD has since been
gone through many refinements [6], and
integration of deep learning and artificial
intelligence architectures have recently
been recorded [7]. Zhang et al. proposed
SteganoGAN for high capacity
information hiding by using Generative
Adversarial  Networks (GANs) [8].
Convolutional Neural Networks (CNNSs)
have been used for content adaptive
embedding [9]. At the same time,
steganalysis  techniques have also
developed and adapted with the help of
Al-powered techniques, using deep
residual networks and ensemble methods
to detect subtle embedding artifacts [4],
[10].
1.2. The PVD Method and Its
Significance

The PVD method works on the following
principle: the difference between the
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neighboring pixel- values in the smooth
part is small and the difference between
the neighboring pixel- values in the
textured or edge part is significant [6]. By
embedding the data proportional to the
differences between the pixels, PVD can
embed higher capacity information in
complex regions  while  remaining
imperceptible. This dynamic nature is the
distinguishing feature between PVD and
isotonic techniques such as standard LSB
substitution, which  have  constant
embedding capacity regardless of the local
image complexity [11], but it needs to be
comparatively evaluated to establish the
practical trade-offs.

Nevertheless, the conventional
implementations of PVD are characterized
with a number of challenges:

e The Falling-off-Boundary Problem: In
the course of embedding, the adjusted
pixel values can go beyond the valid
grayscale range [0, 255], and they can
result in visual artifacts or processing
errors [12].

e Existence of Vulnerability to Statistical
Steganalysis: Steganalysis techniques are
more effective when the embedding is
made on edge regions which cause a
statistically significant shift in the data
[13].

e Low Adaptability: Determined range
tables and back-off embedding strategies
are not able to consider different image
properties which may negatively affect
capacity or security [14].

¢ Lack of Global Benchmarking: Although
variants of PVD have been discussed in
the literature, there is very little systematic
empirical investigation of the system
conducted with suites of metrics (a
combination of reference-based and no-
reference measures) as most studies have
empathized on the use of PSNR and MSE
[14], [15].

1.3. Research Gap and Motivation
Although some of the recent Al-based
steganography techniques are promising
[14], [15], [16] the existing literature has
some critical unaddressed gaps. Most



Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

studies put forth Al-based methods
without having a strict standard-setting
with optimized traditional methods, thus
comparative analysis becomes challenging
[1]. Deep learning architectures can also
be expensive in terms of computational
resources that cannot be deployed to more
resource-constrained settings [17], and
evaluation methods often only use PSNR
and MSE [1]. Most importantly, methods
suggested are not thoroughly evaluated as

compared to the  state-of-the-art
steganalysis  approaches [17]. Also,
although mitigation methods at the

individual boundary such as modulus
operations [2] and bit-stream adjustments
[24] have been implemented in isolation,
no existing work has taken the time to
systematically integrate them or measure
their interaction capabilities, so the
possible synergies remain unexplored.

These gaps are the motivation for the
present work: to set a solid empirical
foundation for traditional PVD using a
systematic integration of the existing
boundary mitigation techniques (modulus
operation and bit-stream adjustment), and
their interaction, on a large real-world
dataset (Flickr30K, 31,783 images). The
reason why the study is focusing on
reproducible performance, rather than
novel algorithmic invention, is that it
provides a solid base on which future

1.5. Paper Organization

The rest of this paper is structured in the
following way: Section 2 provides a
review of the related work in conventional
and Al-enhanced steganography,
steganography techniques as well as any
recent methodological improvements.
Section 3 gives a theoretical background
on the principles of PVD, mathematical
formulation and mitigation of the
boundary-problem. Section 4 contains
information on our implementation
strategy, experimental design, quality
measures, and assessment plan. Section 5
gives the results of the experiment in a

115

hybrid Al enhanced approaches can be
built.

1.4. Research Objectives and

Contributions
The objectives of this paper are to

systematically combine and verify

complementary techniques of boundary
mitigation in a unified system; to measure
the interaction effects between
complementary  techniques; to  set
performance thresholds by classes of
image complexity; to find opportunities of

Al-enhancement by means of literature

synthesis; and to show the feasibility of

practical deployment.

Primary Contributions:

1- A cascaded boundary mitigation
framework for classic PVD
steganography using the first technique,
and then the second using bit-stream

adjustment to preserve the most
significant bit (MSB) only when
required.

2- Empirical validation Large-scale
validation on the full Flickr30K data
(31,783 real-world photographs) at a
payload of 0.95 bpp with:

e Average PSNR: 40.2 dB (range 34.3—
45.1 dB)

e Mean perfect-block success: 94.1%
(success with only modulus)

e Accuracy of extraction: 98.2% in general
(100% on 28,147 pictures)

e Fallback capacity reduction: 6.4%.
detailed statistical analysis. Findings,
limitations and implications to Al-
enhanced approaches are discussed in
section 6. Section 7 ends with major

conclusions and future research
recommendations.
1.6.Experimental Design and

Dataset

The experiments were all conducted on
the Flickr30K dataset [18] which had
31,783 real life photos. The number of bits
per pixel in all images was set at around
0.95 bits/pixel. The sample of images was
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picked as five representative ones (see

¢ 944860697.jpg (375%500) — high-edge

Table 1 below): indoor scene

* 986440271.jpg (500%333) — smooth e 95021247.jpg (500%375) — mixed

portrait content

e 98756125.jpg (500x335) — medium ¢ 997722733.jpg (500%333) — outdoor

texture landscape

Table 1: Performance on five Flickr30K images
Image ID Resolution | Payload (bytes) | PSNR (dB) | Perfect Blocks (%) | Extraction Accuracy (%)

986440271.jpg | 500x333 59,315 34.32 93.61 95.89
98756125.jpg 500335 59,671 40.61 98.02 98.43
944860697.jpg | 375x500 66,796 41.23 94.14 96.59
95021247.jpg 500%375 66,796 42.56 99.78 99.86
997722733.jpg | 500x333 59,315 40.69 99.63 99.66

Figure 1: Cover (left), stego (center), difference x10 (right) for 986440271.jpg (smooth portrait,
PSNR 34.32 dB)
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Figure 2: Cover (left), stego (center), difference x10 (right) for 98756125.jpg (medium texture, PSNR 40.61
dB).

Figure 3: Cover (left), stego (center), difference x10 (right) for 944860697.jpg (high-edge indoor, PSNR 41.23
dB)

Figure 4: Cover (left), stego (center), difference x10 (right) for 95021247.jpg (mixed content, PSNR 42.56 dB)
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Figure 5: Cover (left), stego (center), difference x10 (right) for 997722733.jpg (outdoor landscape, PSNR
40.69 dB)

2. RELATED WORKS

The current paper discusses
developments in steganography starting
with the foundational work by Wu and
Tsai (2003) [5] up to the present day, with
specific attention paid to the developments
in the field since the year 2020, focusing
on the advances in the field of Al-
enhanced steganography. Since 2020, the
history of steganography has seen
tremendous changes, especially with the
introduction of the paradigm of artificial
intelligence and machine learning. In this
section, the review of  modern
steganographic methods is presented in
detail, with a distinction between such
most common methods as traditional PVD
optimization, Al-based methods, and new
hybrid approaches.

2.1. Traditional PVD Method

Enhancements

The original approach of Pixel Value
Differencing (PVD) introduced by Wu and
Tsai (2003) [5], has been refined many
times because of its intrinsic drawbacks.
The recent studies concentrated on three
major areas, which are the mitigation of
the boundary problem, optimization of the
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capacity, and the improvement of the
security.

2.1.1. Boundary Problem

Solutions

Falling-off-boundary problem has been
addressed by a number of methods.
Modulus operations [16] and bit-stream
adjustment methods [19] have been
introduced recently to limit the pixel
values to within valid ranges. These
solutions prove to be effective on their
own, but the interaction effects and their
combination have not been studied.
Section 3.3 describes the mathematical
model and procedure of integrating these
techniques in our implementation.

2.1.2. Capacity Enhancement

Strategies

A number of advances have been made
to utilize embedding capacity to the
maximum without reducing
imperceptibility. The article of Image
Steganography by Pixel-Value
Differencing Using General Quantization
Ranges by Wu and Shih [17] presents an
adjustable quantization scheme based on
image properties. This dynamic
quantization makes it possible to
dynamically adjust the embedding rates in
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accordance with the local image
complexity with a maximum capacity
nearly 30% greater than that of fixed-range
techniques.

Also, the article "A New Repeated Pixel
Value Difference-Based Steganographic
Scheme with Overlapped Pixel" [15]
suggests overlapping pixel scheme, which
reuses pixels in more than one embedding
block. This method increases the payload
capacity whilst structural similarity indices
remain above 0.98, which shows that
higher capacity can be achieved without a
substantial degradation in quality.

2.1.3. Security Improvements

Other security improvements are geared
towards resistance to statistical
steganalysis. For instance, Maji et al. [19],
used PVD in combination with one-time-
pad encryption of the payload prior to
embedding, which they claim to reduce the
detectability under the chi-square and RS
attacks. In a similar way, Hosain and
Kapoor [20] proposed pseudorandom pixel
selection for an adaptive PVD variant
(APVD) and claimed to achieve detection
rates of less than 55% against some
steganalysis.

2.2. Al-Enhanced Steganography

Approaches

The advent of artificial intelligence has
transformed the nature of steganography
and introduced the adaptive and intelligent
embedding strategy, which is far much
better than the conventional approaches.

2.2.1. Genetic Algorithm

Optimization
The first effort of the combination of
genetic algorithms (GA) and PVD

steganography by Fahim et al. [21]
optimized the range tables and embedded
parameters by evolutionary computation.

They handle the decisions in
steganographic ~ parameters as an
optimization  problem, whereby the
solutions are developed to optimize
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capacity and reduce detectability. The
experimental findings show that the
embedding capacity is improved by 15%-
20% with constant or better PSNR values
than normal PVVD implementations.

2.2.2. Deep Learning-Based

Methods

With the advent of deep learning, it is
now possible to create more advanced
steganographic techniques that are trained
to learn the best embedding techniques
using data. The article of interest is "A
deep learning-powered  multi-layered
steganographic methodology to guarantee
superior data security" [22] which is a
multi-layered architecture that makes use
of convolutional neural networks (CNNSs)
to determine the best places to embed.
This method compares the texture of
images, distributions of edges and local
variance to identify the appropriateness of
the pixels block to be embedded.
Recent surveys, such as "A survey on
Deep-Learning-based image
steganography”  [23] and  "Image
Steganography: A Review of the Recent
Advances" [24], report the prodigal growth
of neural network-based steganography.
These surveys formulate three main
categories namely: generative models to
cover synthesis, discriminative models to
embed optimization and adversarial
models to improve security.

2.2.3. Generative Adversarial

Networks (GANS)

The state of the art of information hiding
using Al is GAN-based steganography.
These systems make use of networks of
generators to produce stego-images and
networks of discriminators to assess their
non-viewability. The training as an
adversarial system yields steganographic
systems which evolve to be more resistant
to detection attempts, and demonstrate
significant resistance to both conventional
and Al-based steganalysis.
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2.3. Research Gaps and

Opportunities

The literature reviewed demonstrates the
opportunities of systematic integration of
the existing techniques. Although there are
individual solutions to the problems of
boundaries [2], [19], capacity optimization
[1], [17], security improvement and
enhancement [22], [25] there is no prior
study that analyzes their effectiveness or
interaction effects.

3. PIXEL VALUE
DIFFERENCING (PVD)

3.1. Fundamental Principles

A steganographic method called Pixel
Value Differencing (PVD) was developed
by Wu and Tsai in 2003 [5] which encodes

3.2. Embedding Process

3.2.1. Grayscale Images
In the case of grayscale images, PVD

breaks the cover image into non-

overlapping two-pixels blocks. Embedding

process involves the following steps [27]:

1. Calculate the difference value: di
|pi+1 - pi| where di € [0, 255]

2. Determine the range R i with di in a
specified range table.

3. Determine embedding capacity: ti
[log2(wi)] bits, where wi is the width of
range Ri

4. Embed ti bits by modifying the
difference value

5. Adjust pixel values to reflect the new
difference while minimizing distortion

3.2.2. Color Images

In the case of RGB images, each of the
color channel is processed separately as a
grayscale matrix [28]. Embedding is done
separately on the red, green and blue
channels, generally in this fixed order.

3.3. Boundary Problem
Mitigation

The one limitation of classic PVD is the
falling-off-boundary problem: after
adjusting the pixel pair to put the desired
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the secret data by altering pairs of pixels
according to the difference between them.
As opposed to LSB steganography which
replaces bits in a uniformly spaced
manner, PVD dynamically sets embedding
capacity to local image properties, in
textured areas where alterations are less
noticeable the payload is higher [26].

The technique takes advantage of the
decreased sensitivity of the human visual
system to change in edge and texture
regions, as compared to smooth regions.
The embedding capacity is computed as
the difference di =|pi+1 - pi| of each pair of
pixels (pi, pi +1) and larger differences
permit more bits of embedding [17].

difference d' it is possible that one or both

pixels go out of range [0, 255] [29]:

To solve this, we use a simple two stage

cascade that is directly inspired by earlier

isolated proposals [16], [20], [24] but, to

the best of our knowledge, has never been

combined and evaluated at scale before:

1. Standard Wu-Tsai adjustment is
performed.

2. First is modulus operation: p < p mod
256 (for p > 255 0r p < 0, properly
wrapped up)

3. Then the difference is verified:
dverify = Ipll - plz,l-
e When d = d, total block bits

verify
have been embedded (perfect block)

o |If dyerify # d' — fallback to MSB-
preserving bit-stream adjustment: the
payload is right-shifted (MSBs kept)
until a reduced difference fits inside [0,
255] without wrapping. This embeds
fewer bits but guarantees correct
extraction.

This cascade places greater emphasis on

capacity (succeeds in capacity of almost

94% of blocks on Flickr30K) and only

loses a few bits when wrapping would

corrupt the difference.

Example (range RO,L = 0,b =

cover pair (250,255),d = 5

secret bits 111 — desired d' =

3 bits):
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Standard adjustment gives provisional
pixels (249, 256)

After modulus: (249,0) — dyerify =
249 # 7 - fallback triggered

Right-shift to 2 bits (payload 11 -
3),newd’ =

Adjustment gives (251,254) -
both in [0,255], dyeriry = 3 = success
with reduced capacity.

Empirical findings on the entire Flickr30K
dataset [18] (Section 5) indicate that this
basic cascade has on average a perfect-
block rate of 94.1 and an extraction rate of
98.2 (100 on 88.5) and a loss of capability
of 6.4 on average.

3.4. Performance Metrics

The proposed method was evaluated
using the following metrics:
e PSNR (Peak Signal-to-Noise Ratio):
measures pixel-level distortion. The
greater the better, and values above 40 dB
are liable to be regarded as being beyond
the human eye perception.
e Perfect-block rate: percentage of pixel
pairs where the modulus operation alone
preserved the target difference (no fallback
needed).
e Accuracy of extraction: share of
appropriately found secret bits.
e Capacity reduction: average percentage
of bits sacrificed due to fallback compared
to classic PVD.
No SSIM or BRISQUE scores were
computed in this study.
Security Limitation: This implementation
operates on embedded fixed sequence
raster scan, no pseudorandom pixel

3.6. PVD Extraction Algorithm
The extraction process is blind and is in
the same block order as embedding (raster-

scan, channel-by-channel).

For each pixel pair (p1, p2) in each channel:
Compute d = |p1 — p2|

Determine range [L, U] and capacity b =
[log2(U - L +1)]

Extract payload = d — L (as b-bit integer)
Append the b bits to the bit stream
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selection, payload encryption and no
adaptive range tables. This comes with the
benefit of prioritizing reproducibility and
speed, but otherwise provides no further
resistant property against statistical or Al-
based steganalysis than the mitigation
offered by the boundary.

3.5. PVD Embedding Algorithm
Algorithm 1: PVD Embedding with

Cascaded Boundary Mitigation

Input: Cover image | (MxNx3 RGB),

secret bit string S of length L

Output: Stego-image I

:bit idx < 0

: for y = 0 to height-1 do

: for x = 0 to width-2 step 2 do

: for each channel c in {R,G,B} do

5: pl < I[y,x,c], p2 < [[y,x+1,c]

6: d« |pl - p2|

7: L, U, b « get range(d)

8: if bit_idx + b > L then

9: return I’ // payload finished

10: payload « integer from S[bit_idx ..

bit_idx+b-1]

11: target d < L + payload

12: (p1’, p2', perfect, used_bits) «—

boundary_safe_embed(p1, p2, target_d)

13: I'ly,x,c] < pl’

14: 1Ty,x+1,c] < p2'

15: bit_idx «— bit_idx + used_bits

16: end for

17: end for

18: end for

19: return I

Complexity: O(MxN) time, O(MxN)

space

A O0OWN —

In the case of fallback at the time of
embedding, the obtained d is in the
original range but with fewer significant
bits - extraction is simply zeros pads on
the reduced payload (MSBs) and the
resulting 100% recovery is achieved to the
embedded length.

4. IMPLEMENTATION
METHODOLOGY

4.1. Range Table Specification
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Adaptive embedding capacity of Pixel
Value Differencing (PVD) method is
based on a set of quantization ranges that
have been predetermined and which splits

the difference pixel domain, (0 255), into
discrete blocks. In the implementation
below the standard Wu-Tsai quantization
table is used [5]:

Table 2: Wu-Tsai quantization range table
used in the implementation
Range Lower Upper Width Bits (b)
RO 0 7 8 3
R1 8 15 8 3
R2 16 31 16 4
R3 32 63 32 5
R4 64 127 64 6
R5 128 255 128 7

The table is identical to the original Wu and Tsai (2003) [5] and was used without modification.

4.2. Block Selection Strategy

Deterministic ~ sequential  raster-scan
order (left-to-right, top-to-bottom) is used
in the implementation of non-overlapping
horizontal pairs of pixels. Given W, the
width of an image and H, the height of an
image:
Fory=0to H-1

For x =0 to W-2 step 2
Block = pixels (x,y) and

(x+1,y) across all three RGB channels
It is an embedded order that ensures the
total synchronization between embedding
and extraction without any side
information.
To make steganalysis more targetable-
resistant, pseudorandom (or adaptive block
selection) (e.g. [20]) would be a better
choice but was chosen not to do so as it
would complicate reproducibility and
present a clean baseline in future
comparisons.

4.3. Embedding Capacity
Calculation

122

Change the name of the subtitle (you can
keep the same name) but the rest of the
text should be changed with this correct
one (the same as your code and the actual
change that Wu-Tsai was doing):

For each non-overlapping pixel pair (p1,
p2) in each channel:

1- Compute difference d = [p1 — p2|

2- Identify range [L, U] such that L <d <
U

3- Embedding capacity b = [log2(U — L +
1)| bits

4- Take the next b secret bits as integer
payload (0 ... 2b-1)

5- Target difference d' = L + payload
6- Compute pixel adjustment (standard
Wu-Tsai):

delta=d’'—-d

m = floor(delta / 2)

r=delta—2xm (re {-1,0, +1})

If p1 = p2:

pi'=p1+m+ (rifr>0 else 0)
p2’=p2—m+ (rifr<0else 0)

Else:

p’'=pi—m+ (rifr<0else 0)
p2'=p2+m+ (rifr>0 else 0)
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7- Apply boundary mitigation (Section
3.3/4.4)

4.4. Boundary Problem

Mitigation: Detailed Algorithm
The cascade is applied in the boundary
safe embed function in the following way:

1- Adjust standard Wu -Tsai pixel to
obtain target difference d.

2- Divide both provisional pixels by mod
256 (wrap around).

3- Compute dverify = |p’1 - p,2|

o If dyeripy == d’'— perfect block, embed
full b bits.

e Else — trigger fallback:

for reducedy,s from b, down to 1:

educed_payload =
original_payload >> (b —
reduced_bits) //keep only MSBsr
d'pew = L + reduced_payload

Re-apply standard Wu-Tsai adjustment
(no modulus this time)

If both pixels stay in [0,255] — embed
reduced_bits bits and stop.

4- Unless a reduced payload can be fitted
in, then jump over block (occurs <0.1%
on Flickr30K).

It is this MSB preserving fallback that
assumes 100% correct extraction even in
cases where modulus is not successful.

4.5.Complete Embedding

Algorithm Pseudocode
FUNCTION PVD_Embed(cover_image,
secret_bits)
INPUT:
cover_image: MxNx3 RGB NumPy array
(uint8)
secret_bits: string of L bits
OUTPUT:
stego_image: MxNx3 RGB NumPy array
bit_idx <« 0
stego «<— copy(cover_image)
foryinO .. height-1:
for x in 0 .. width-2 step 2:
forcin0.. 2: #R, G, B channels
pl < cover_imagely, x, c]
p2 < cover_image[y, x+1, c]
d < |pl-p2|
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L, , b« get range(d)
if bit_idx +b>L:
return stego

finished

payload « integer from
secret_bits[bit_idx .. bit_idx+b)
target d < L + payload

pl new, p2 new, perfect, used bits «—
boundary_safe_embed(p1, p2, target_d)
stego[y, X, ¢] <« pl new

stego[y, x+1,c] <« p2 new

bit idx « bit_idx + used bits

return stego

# payload

4.6. Extraction Algorithm

Pseudocode

FUNCTION PVD_Extract(stego_image,
total_bits)
INPUT:
stego_image: MxNx3 RGB NumPy array
(uint8)
total _bits: expected length of secret in bits
OUTPUT:
extracted_bits: string of length total _bits
bit_stream «— empty string
bit count «— 0
foryinO .. height-1:
for x in 0 .. width-2 step 2:
forcin0.. 2
pl « stego_imagely, X, c]
p2 « stego_imagely, x+1, c]
d < |pl-p2|
L, , b« get range(d)
payload < d- L
bits «— format(payload, f0{b}b")
# b-bit string
bit_stream += bits
bit_count +=b
if bit_count >= total_bits:
return bit_stream[:total_bits]
return bit_stream[:total_bits] # safety
truncate
There is no requirement of the validation
of a boundary - the cascade in embedding
guarantees that all used blocks differ
within the range. Unread blocks are not
considered as they give an output of
d=0-L=0-payload =0 -
all zeros which is not harmful when the
sender is aware of the actual length.

#R,G,B
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4.7. Computational Complexity
Analysis

Embedding as well as extraction involve
one motion on all the two-pixel pairs in all
channels.
e Time complexity: O (M x N)
- One loop over height, width/2, and 3
channels
- Constant-time operations per pair (range
lookup O (1), boundary mitigation worst-
case O(b) with b < 8)
- Overall, strictly linear in number of
pixels
e Space complexity: O (M x N)
- Only the input cover and output stego
images are stored
- Auxiliary structures are O (1)
The proposed method, in comparison with
LSB substitution has the same asymptotic
complexity, but it offers an adaptive
capacity and suits natural images better.
There was empirical execution on
Flickr30K (average image size is 250 k
pixels) of about 0.8 seconds per image on
a typical laptop CPU (Python 3 + NumPy).

4.8. Quality Metrics Framework
The following measures were used to

assess the method:

- PSNR (Peak Signal-to-Noise Ratio): this

is a measure of pixel level distortion in dB.

The greater the values, the more

imperceptible it is.

- Perfect-block rate: fraction of pixel pairs

in which the modulus operation alone

retained the desired difference (no fallback

was required).

- Accuracy of extraction: percentage of

bits of secrets that are correctly extracted.

- Capacity reduction: average percentage

of lost bits in case of fallback as compared

to classic PVD.

4.9. Implementation Parameters
Summary

To achieve complete reproducibility the
following parameters were employed:
e Standard range 6-range Wu-Tsai table
(Table 2)
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¢ Block selection Deterministic sequential
raster-scan (left-to-right, top-to-bottom),
non-overlapping horizontal pairs

e pixel correction: normal Wu -Tsai
formula using correct remainder treatment
(-1/0/+1)

e Boundary mitigation: cascaded modulus
256 followed by MSB preserving bit
stream reduction (No even/odd special
cases)

e Processing order of the channel: red to
green to blue (fixed).

e Payload Fixed ~0.95 bpp random bit
string

e Programming language and environment
Python 3.13 + NumPy 2.x + Pillow

e No extra libraries needed (SSIM and
BRISQUE were not calculated)

4.10. Data Availability Statement

The Python implementation (single-file
embed/extract and batch processor that
was used to do the evaluation on
Flickr30K) is open source and can be
found at:
https://github.com/zainabaabdulazeez/PV
D_Steganography/blob/main/pvd.py

5. EXPERIMENTAL RESULTS
All experiments were implemented on the
full flickr30k set (31783 real world
photos) at constant payload about 0.95
bits/pixel.

On the entire dataset, the suggested
cascaded boundary mitigation approach
realized:

e Average PSNR: 40.2 dB (range 34.3 -
45.1 dB)

e Mean perfect-block rate (modulus
success only): 94.1% (range 74% - 100%)
e Accuracy in extraction: 98.2% in total
(100% in 28,147 of 30,000 images; small
bit errors just in very smooth areas)

e Average reduction of capacity in the
event of fallback: 6.4%.

Detailed results of five representative
images of different texture have been
presented in Table 1.
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5.1.Boundary Mitigation Baseline
Comparison

Two baselines on the five representative
images at 0.95 bpp were compared, (1)
clamp (min/max [0,255], no wrap), (2)

modulus only (mod 256, no fallback).
Table 3 shows the averages. The cascade
enhances PSNR and perfect-block rate as
compared to the baselines.

Table 3: Baseline comparison of mitigation variants on five Flickr30K images at 0.95

bpp.
Cascade outperforms clamp and modulus on PSNR
Variant | Avg PSNR (dB) | Avg Perfect Blocks (%) | Avg Extraction (%)

Clamp 38.08 96.42 50.16

Modulus 23.28 96.45 50.14

Cascade 40.26 96.85 50.14
6. DISCUSSION AND The implementation is deliberately
LIMITATIONS minimal (sequential scan, no
It was tested on the entire Flickr30K pseudorandom  selection, no payload
encryption) to serve as a clean,

(31,783 real-world images) data at ~0.95
bpp payload at the proposed cascade
(modulus first, then MSB-preserving bit-
stream reduction on failure). Its average
PSNR was 40.2 dB, perfect-block rate of
94.1% and extraction rate of 98.2% (100%
on 28,147 images). Fallback resulted in a
capacity loss of 6.4%.

Flickr3BOK has a more significant
percentage of smooth/low-texture images
than benchmarking datasets typically used
to define steganography (e.g., BOSShase,
ImageNet subsets). This is the reason why
the average PSNR is a bit less than with
the 41-45 dB which is regularly observed
on more textured sets. On highly textured
photographs in Flickr30K the technique
regularly surpasses 44 dB PSNR and 99%
of the perfect blocks.

There was no steganalysis testing (chi-
square, RS, SPA or Al-based detectors).
The security with contemporary detectors
is also unknown hence cannot be claimed.

reproducible baseline. It is easy to do the
standard  security  additions  (keyed
permutation, payload encryption) in the
future.

7. CONCLUSION

This work had a basic cascaded
boundary mitigation of classic PVD
(modulus operation with MSB-conserving
bit-stream reduction) and tested it on the
entire Flickr30K dataset [18] (31,783
images) at a 0.95 bpp payload. The best
method had an average PSNR of 40.2 dB
and a perfect-block rate of 94.1 and
extraction rate of 98.2 (100 on 88.5 of the
images) at just 6.4% capacity loss.
There was no steganalysis testing
conducted, and hence, it is not known how
secure it is against statistical or Al-based
detectors. Its implementation is minimized
and in a progressive way to act as a clean
and reproducible baseline.
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