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Abstract: 

   This paper presents the idea of a cascaded boundary mitigation scheme 

for Pixel Value Differencing (PVD) steganography by jointly using 

modulus operation and MSB preserving bit-stream adjustment to address 

the falling-off-boundary issue. While the behavior of the applications of 

modulus and bits stream adjustment has been studied separately, their 

interaction and their performance at large scale have never been studied 

together. The method was implemented in Python and tested on the full 

dataset of Flickr30K (31,783 real world photographs) and a fixed payload 

of ~0.95 bits/pixel. Across all the images the framework achieved an 

average PSNR of 40.2dB (with a range of 34.3-45.1 dB), perfect-block rate 

(successful embedding without fallback) of 94.1% (with a range of 74%-

100%), and extraction accuracy of 98.2% (100% on 28,147 images). The 

average capacity loss due to the fallback mechanism was 6.4%. Detailed 

results on five representative images of different texture are provided which 

confirm the robustness of the method for smooth as well as highly textured 

content. The approach preserves the linear O(M×N) complexity and 

provides a reproducible baseline to compare the traditional and the AI 

enhanced steganography techniques. 
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1. INTRODUCTION 
   It seems highly improbable that a threat 

to security that will be more serious than 

data breaches could be found in the digital 

landscape of the contemporary 

community. 3158 incidents exposed about 

1.5 billion records were exposed 

worldwide in 2024 alone. While 

cryptography helps to encrypt data 

content, the presence of the encrypted data 

is still detectable [1]. Steganography 

provides a complementary technique to 

hide the existence of hidden 

communication in innocuous looking 

cover media [2], [3]. 
 

1.1. Evolution of Steganography 

Techniques 
   Image steganography has developed 

considerably from the initial spatial 

domain methods. Least Significant Bit 

(LSB) substitution is a type of data 

embedding which replaces the least 

significant bits of the pixel values [4]. The 

Pixel Value Differencing (PVD) method 

proposed by Wu and Tsai in 2003 [5], 

overcame some of the limitations of LSB 

by taking advantage of the fact that the 

human visual system has low sensitivity to 

changes in edge areas. PVD has since been 

gone through many refinements [6], and 

integration of deep learning and artificial 

intelligence architectures have recently 

been recorded [7]. Zhang et al. proposed 

SteganoGAN for high capacity 

information hiding by using Generative 

Adversarial Networks (GANs) [8]. 

Convolutional Neural Networks (CNNs) 

have been used for content adaptive 

embedding [9]. At the same time, 

steganalysis techniques have also 

developed and adapted with the help of 

AI-powered techniques, using deep 

residual networks and ensemble methods 

to detect subtle embedding artifacts [4], 

[10]. 

1.2. The PVD Method and Its 

Significance 
  The PVD method works on the following 

principle: the difference between the 

neighboring pixel- values in the smooth 

part is small and the difference between 

the neighboring pixel- values in the 

textured or edge part is significant  [6]. By 

embedding the data proportional to the 

differences between the pixels, PVD can 

embed higher capacity information in 

complex regions while remaining 

imperceptible. This dynamic nature is the 

distinguishing feature between PVD and 

isotonic techniques such as standard LSB 

substitution, which have constant 

embedding capacity regardless of the local 

image complexity [11], but it needs to be 

comparatively evaluated to establish the 

practical trade-offs. 

Nevertheless, the conventional 

implementations of PVD are characterized 

with a number of challenges: 

 The Falling-off-Boundary Problem: In 

the course of embedding, the adjusted 

pixel values can go beyond the valid 

grayscale range [0, 255], and they can 

result in visual artifacts or processing 

errors [12]. 

 Existence of Vulnerability to Statistical 

Steganalysis: Steganalysis techniques are 

more effective when the embedding is 

made on edge regions which cause a 

statistically significant shift in the data 

[13]. 

 Low Adaptability: Determined range 

tables and back-off embedding strategies 

are not able to consider different image 

properties which may negatively affect 

capacity or security [14]. 

 Lack of Global Benchmarking: Although 

variants of PVD have been discussed in 

the literature, there is very little systematic 

empirical investigation of the system 

conducted with suites of metrics (a 

combination of reference-based and no-

reference measures) as most studies have 

empathized on the use of PSNR and MSE 

[14], [15]. 

1.3. Research Gap and Motivation 
  Although some of the recent AI-based 

steganography techniques are promising 

[14], [15], [16] the existing literature has 

some critical unaddressed gaps. Most 
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studies put forth AI-based methods 

without having a strict standard-setting 

with optimized traditional methods, thus 

comparative analysis becomes challenging 

[1]. Deep learning architectures can also 

be expensive in terms of computational 

resources that cannot be deployed to more 

resource-constrained settings [17], and 

evaluation methods often only use PSNR 

and MSE [1]. Most importantly, methods 

suggested are not thoroughly evaluated as 

compared to the state-of-the-art 

steganalysis approaches [17]. Also, 

although mitigation methods at the 

individual boundary such as modulus 

operations [2] and bit-stream adjustments 

[24] have been implemented in isolation, 

no existing work has taken the time to 

systematically integrate them or measure 

their interaction capabilities, so the 

possible synergies remain unexplored. 

These gaps are the motivation for the 

present work: to set a solid empirical 

foundation for traditional PVD using a 

systematic integration of the existing 

boundary mitigation techniques (modulus 

operation and bit-stream adjustment), and 

their interaction, on a large real-world 

dataset (Flickr30K, 31,783 images). The 

reason why the study is focusing on 

reproducible performance, rather than 

novel algorithmic invention, is that it 

provides a solid base on which future 

hybrid AI enhanced approaches can be 

built. 

1.4. Research Objectives and 

Contributions 
   The objectives of this paper are to 

systematically combine and verify 

complementary techniques of boundary 

mitigation in a unified system; to measure 

the interaction effects between 

complementary techniques; to set 

performance thresholds by classes of 

image complexity; to find opportunities of 

AI-enhancement by means of literature 

synthesis; and to show the feasibility of 

practical deployment. 

Primary Contributions: 

1- A cascaded boundary mitigation 

framework for classic PVD 

steganography using the first technique, 

and then the second using bit-stream 

adjustment to preserve the most 

significant bit (MSB) only when 

required. 

2- Empirical validation Large-scale 

validation on the full Flickr30K data 

(31,783 real-world photographs) at a 

payload of 0.95 bpp with: 

 Average PSNR: 40.2 dB (range 34.3–

45.1 dB) 

 Mean perfect-block success: 94.1% 

(success with only modulus) 

 Accuracy of extraction: 98.2% in general 

(100% on 28,147 pictures) 

 Fallback capacity reduction: 6.4%. 

1.5. Paper Organization 
    The rest of this paper is structured in the 

following way: Section 2 provides a 

review of the related work in conventional 

and AI-enhanced steganography, 

steganography techniques as well as any 

recent methodological improvements. 

Section 3 gives a theoretical background 

on the principles of PVD, mathematical 

formulation and mitigation of the 

boundary-problem. Section 4 contains 

information on our implementation 

strategy, experimental design, quality 

measures, and assessment plan. Section 5 

gives the results of the experiment in a 

detailed statistical analysis. Findings, 

limitations and implications to AI-

enhanced approaches are discussed in 

section 6. Section 7 ends with major 

conclusions and future research 

recommendations. 

 

1.6. Experimental Design and 

Dataset 
  The experiments were all conducted on 

the Flickr30K dataset [18] which had 

31,783 real life photos. The number of bits 

per pixel in all images was set at around 

0.95 bits/pixel. The sample of images was 
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picked as five representative ones (see 

Table 1 below): 

 986440271.jpg (500×333) – smooth 

portrait 

 98756125.jpg (500×335) – medium 

texture 

 944860697.jpg (375×500) – high-edge 

indoor scene 

 95021247.jpg (500×375) – mixed 

content 

 997722733.jpg (500×333) – outdoor 

landscape 

 
 

Table 1: Performance on five Flickr30K images 

Image ID Resolution Payload (bytes) PSNR (dB) Perfect Blocks (%) Extraction Accuracy (%) 

986440271.jpg 500×333 59,315 34.32 93.61 95.89 

98756125.jpg 500×335 59,671 40.61 98.02 98.43 

944860697.jpg 375×500 66,796 41.23 94.14 96.59 

95021247.jpg 500×375 66,796 42.56 99.78 99.86 

997722733.jpg 500×333 59,315 40.69 99.63 99.66 

 

 

 

Figure 1: Cover (left), stego (center), difference ×10 (right) for 986440271.jpg (smooth portrait,                 

PSNR 34.32 dB) 
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Figure 2: Cover (left), stego (center), difference ×10 (right) for 98756125.jpg (medium texture, PSNR 40.61 

dB). 

 

Figure 3: Cover (left), stego (center), difference ×10 (right) for 944860697.jpg (high-edge indoor, PSNR 41.23 

dB) 

 

Figure 4: Cover (left), stego (center), difference ×10 (right) for 95021247.jpg (mixed content, PSNR 42.56 dB) 



Journal of Kerbala University, Vol. 22, Issue 4, December , 2025 
 

118 

 

Figure 5: Cover (left), stego (center), difference ×10 (right) for 997722733.jpg (outdoor landscape, PSNR   

40.69 dB) 

2. RELATED WORKS 
   The current paper discusses 

developments in steganography starting 

with the foundational work by Wu and 

Tsai (2003) [5] up to the present day, with 

specific attention paid to the developments 

in the field since the year 2020, focusing 

on the advances in the field of AI-

enhanced steganography. Since 2020, the 

history of steganography has seen 

tremendous changes, especially with the 

introduction of the paradigm of artificial 

intelligence and machine learning. In this 

section, the review of modern 

steganographic methods is presented in 

detail, with a distinction between such 

most common methods as traditional PVD 

optimization, AI-based methods, and new 

hybrid approaches. 

 

2.1. Traditional PVD Method 

Enhancements 
   The original approach of Pixel Value 

Differencing (PVD) introduced by Wu and 

Tsai (2003) [5], has been refined many 

times because of its intrinsic drawbacks. 

The recent studies concentrated on three 

major areas, which are the mitigation of 

the boundary problem, optimization of the 

capacity, and the improvement of the 

security. 

2.1.1. Boundary Problem 

Solutions 
   Falling-off-boundary problem has been 

addressed by a number of methods. 

Modulus operations [16] and bit-stream 

adjustment methods [19] have been 

introduced recently to limit the pixel 

values to within valid ranges. These 

solutions prove to be effective on their 

own, but the interaction effects and their 

combination have not been studied. 

Section 3.3 describes the mathematical 

model and procedure of integrating these 

techniques in our implementation. 

 

2.1.2. Capacity Enhancement 

Strategies 
   A number of advances have been made 

to utilize embedding capacity to the 

maximum without reducing 

imperceptibility. The article of Image 

Steganography by Pixel-Value 

Differencing Using General Quantization 

Ranges by Wu and Shih [17] presents an 

adjustable quantization scheme based on 

image properties. This dynamic 

quantization makes it possible to 

dynamically adjust the embedding rates in 
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accordance with the local image 

complexity with a maximum capacity 

nearly 30% greater than that of fixed-range 

techniques. 

Also, the article "A New Repeated Pixel 

Value Difference-Based Steganographic 

Scheme with Overlapped Pixel" [15] 

suggests overlapping pixel scheme, which 

reuses pixels in more than one embedding 

block. This method increases the payload 

capacity whilst structural similarity indices 

remain above 0.98, which shows that 

higher capacity can be achieved without a 

substantial degradation in quality. 
 

2.1.3. Security Improvements 
   Other security improvements are geared 

towards resistance to statistical 

steganalysis. For instance, Maji et al. [19], 

used PVD in combination with one-time-

pad encryption of the payload prior to 

embedding, which they claim to reduce the 

detectability under the chi-square and RS 

attacks. In a similar way, Hosain and 

Kapoor [20] proposed pseudorandom pixel 

selection for an adaptive PVD variant 

(APVD) and claimed to achieve detection 

rates of less than 55% against some 

steganalysis. 

 

2.2. AI-Enhanced Steganography 

Approaches 
   The advent of artificial intelligence has 

transformed the nature of steganography 

and introduced the adaptive and intelligent 

embedding strategy, which is far much 

better than the conventional approaches. 

 

2.2.1. Genetic Algorithm 

Optimization 
  The first effort of the combination of 

genetic algorithms (GA) and PVD 

steganography by Fahim et al. [21] 

optimized the range tables and embedded 

parameters by evolutionary computation. 

They handle the decisions in 

steganographic parameters as an 

optimization problem, whereby the 

solutions are developed to optimize 

capacity and reduce detectability. The 

experimental findings show that the 

embedding capacity is improved by 15%-

20% with constant or better PSNR values 

than normal PVD implementations. 
 

2.2.2. Deep Learning-Based 

Methods 
   With the advent of deep learning, it is 

now possible to create more advanced 

steganographic techniques that are trained 

to learn the best embedding techniques 

using data. The article of interest is "A 

deep learning-powered multi-layered 

steganographic methodology to guarantee 

superior data security" [22] which is a 

multi-layered architecture that makes use 

of convolutional neural networks (CNNs) 

to determine the best places to embed. 

This method compares the texture of 

images, distributions of edges and local 

variance to identify the appropriateness of 

the pixels block to be embedded. 

Recent surveys, such as "A survey on 

Deep-Learning-based image 

steganography" [23] and "Image 

Steganography: A Review of the Recent 

Advances" [24], report the prodigal growth 

of neural network-based steganography. 

These surveys formulate three main 

categories namely: generative models to 

cover synthesis, discriminative models to 

embed optimization and adversarial 

models to improve security. 

 

2.2.3. Generative Adversarial 

Networks (GANs) 
  The state of the art of information hiding 

using AI is GAN-based steganography. 

These systems make use of networks of 

generators to produce stego-images and 

networks of discriminators to assess their 

non-viewability. The training as an 

adversarial system yields steganographic 

systems which evolve to be more resistant 

to detection attempts, and demonstrate 

significant resistance to both conventional 

and AI-based steganalysis. 
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2.3. Research Gaps and 

Opportunities 
   The literature reviewed demonstrates the 

opportunities of systematic integration of 

the existing techniques. Although there are 

individual solutions to the problems of 

boundaries [2], [19], capacity optimization 

[1], [17], security improvement and 

enhancement [22], [25] there is no prior 

study that analyzes their effectiveness or 

interaction effects.  

3. PIXEL VALUE 

DIFFERENCING (PVD) 

3.1. Fundamental Principles 
   A steganographic method called Pixel 

Value Differencing (PVD) was developed 

by Wu and Tsai in 2003 [5] which encodes 

the secret data by altering pairs of pixels 

according to the difference between them. 

As opposed to LSB steganography which 

replaces bits in a uniformly spaced 

manner, PVD dynamically sets embedding 

capacity to local image properties, in 

textured areas where alterations are less 

noticeable the payload is higher [26]. 

The technique takes advantage of the 

decreased sensitivity of the human visual 

system to change in edge and texture 

regions, as compared to smooth regions. 

The embedding capacity is computed as 

the difference di =|pi+1 - pi| of each pair of 

pixels (pi, pi +1) and larger differences 

permit more bits of embedding [17]. 

 

3.2. Embedding Process 

3.2.1. Grayscale Images 
   In the case of grayscale images, PVD 

breaks the cover image into non-

overlapping two-pixels blocks. Embedding 

process involves the following steps [27]: 

1. Calculate the difference value: di = 

|pi+1 - pi| where di ∈ [0, 255] 

2. Determine the range R i with di in a 

specified range table. 

3. Determine embedding capacity: ti = 

⌊log2(wi)⌋ bits, where wi is the width of 

range Ri 

4. Embed ti bits by modifying the 

difference value 

5. Adjust pixel values to reflect the new 

difference while minimizing distortion 
 

3.2.2. Color Images 
   In the case of RGB images, each of the 

color channel is processed separately as a 

grayscale matrix [28]. Embedding is done 

separately on the red, green and blue 

channels, generally in this fixed order. 
 

3.3. Boundary Problem 

Mitigation 
   The one limitation of classic PVD is the 

falling-off-boundary problem: after 

adjusting the pixel pair to put the desired 

difference d' it is possible that one or both 

pixels go out of range [0, 255] [29]: 

To solve this, we use a simple two stage 

cascade that is directly inspired by earlier 

isolated proposals [16], [20], [24] but, to 

the best of our knowledge, has never been 

combined and evaluated at scale before: 

1. Standard Wu–Tsai adjustment is 

performed. 

2. First is modulus operation: 𝑝́ ← 𝑝́ mod 

256 (for 𝑝́ >  255 𝑜𝑟 𝑝́ < 0, properly 

wrapped up) 

3. Then the difference is verified: 

𝑑𝑣𝑒𝑟𝑖𝑓𝑦 = |𝑝1́ − 𝑝2́|. 

 When 𝑑𝑣𝑒𝑟𝑖𝑓𝑦 = 𝑑́, total block bits 

have been embedded (perfect block) 

 If 𝑑𝑣𝑒𝑟𝑖𝑓𝑦 ≠  𝑑′ → 𝑓𝑎𝑙𝑙𝑏𝑎𝑐𝑘 to MSB-

preserving bit-stream adjustment: the 

payload is right-shifted (MSBs kept) 

until a reduced difference fits inside [0, 

255] without wrapping. This embeds 

fewer bits but guarantees correct 

extraction. 

This cascade places greater emphasis on 

capacity (succeeds in capacity of almost 

94% of blocks on Flickr30K) and only 

loses a few bits when wrapping would 

corrupt the difference. 

Example (range 𝑅0, 𝐿 =  0, 𝑏 =  3 bits): 

cover pair (250, 255), 𝑑 =  5 

secret bits 111 → 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑′ = 7 
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Standard adjustment gives provisional 

pixels (249, 256) 

After modulus: (249, 0)  →  𝑑𝑣𝑒𝑟𝑖𝑓𝑦 =

249 ≠ 7 → 𝑓𝑎𝑙𝑙𝑏𝑎𝑐𝑘 triggered 

Right-shift to 2 bits (𝑝𝑎𝑦𝑙𝑜𝑎𝑑 11 →
3), 𝑛𝑒𝑤 𝑑′ = 3 

Adjustment gives (251, 254) →
𝑏𝑜𝑡ℎ 𝑖𝑛 [0, 255], 𝑑𝑣𝑒𝑟𝑖𝑓𝑦 = 3 → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

with reduced capacity. 

Empirical findings on the entire Flickr30K 

dataset [18] (Section 5) indicate that this 

basic cascade has on average a perfect-

block rate of 94.1 and an extraction rate of 

98.2 (100 on 88.5) and a loss of capability 

of 6.4 on average. 
 

3.4. Performance Metrics 
  The proposed method was evaluated 

using the following metrics: 

 PSNR (Peak Signal-to-Noise Ratio): 

measures pixel-level distortion. The 

greater the better, and values above 40 dB 

are liable to be regarded as being beyond 

the human eye perception. 

 Perfect-block rate: percentage of pixel 

pairs where the modulus operation alone 

preserved the target difference (no fallback 

needed). 

 Accuracy of extraction: share of 

appropriately found secret bits. 

 Capacity reduction: average percentage 

of bits sacrificed due to fallback compared 

to classic PVD. 

No SSIM or BRISQUE scores were 

computed in this study. 

Security Limitation: This implementation 

operates on embedded fixed sequence 

raster scan, no pseudorandom pixel 

selection, payload encryption and no 

adaptive range tables. This comes with the 

benefit of prioritizing reproducibility and 

speed, but otherwise provides no further 

resistant property against statistical or AI-

based steganalysis than the mitigation 

offered by the boundary. 
 

3.5. PVD Embedding Algorithm 
  Algorithm 1: PVD Embedding with 

Cascaded Boundary Mitigation 

Input: Cover image I (M×N×3 RGB), 

secret bit string S of length L 

Output: Stego-image I′ 

1: bit_idx ← 0 

2: for y = 0 to height-1 do 

3: for x = 0 to width-2 step 2 do 

4: for each channel c in {R,G,B} do 

5:  p1 ← I[y,x,c], p2 ← I[y,x+1,c] 

6:  d ← |p1 - p2| 

7:  L, U, b ← get_range(d) 

8: if bit_idx + b > L then 

9: return I′   // payload finished 

10: payload ← integer from S[bit_idx .. 

bit_idx+b-1] 

11:  target_d ← L + payload 

12: (p1′, p2′, perfect, used_bits) ← 

boundary_safe_embed(p1, p2, target_d) 

13: I′[y,x,c] ← p1′ 

14:  I′[y,x+1,c] ← p2′ 

15:  bit_idx ← bit_idx + used_bits 

16: end for 

17: end for 

18: end for 

19: return I′ 

Complexity: O(M×N) time, O(M×N) 

space 

 

3.6. PVD Extraction Algorithm 
  The extraction process is blind and is in 

the same block order as embedding (raster-

scan, channel-by-channel). 

For each pixel pair (p₁, p₂) in each channel: 

Compute d = |p₁ – p₂| 

Determine range [L, U] and capacity b = 

⌊log₂(U – L + 1)⌋ 
Extract payload = d – L (as b-bit integer) 

Append the b bits to the bit stream 

In the case of fallback at the time of 

embedding, the obtained d is in the 

original range but with fewer significant 

bits - extraction is simply zeros pads on 

the reduced payload (MSBs) and the 

resulting 100% recovery is achieved to the 

embedded length. 

4. IMPLEMENTATION 

METHODOLOGY 

4.1. Range Table Specification 
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  Adaptive embedding capacity of Pixel 

Value Differencing (PVD) method is 

based on a set of quantization ranges that 

have been predetermined and which splits 

the difference pixel domain, (0 255), into 

discrete blocks. In the implementation 

below the standard Wu-Tsai quantization 

table is used [5]: 
 

 

Table 2: Wu-Tsai quantization range table 

used in the implementation 

Range Lower Upper Width Bits (b) 

R0 0 7 8 3 

R1 8 15 8 3 

R2 16 31 16 4 

R3 32 63 32 5 

R4 64 127 64 6 

R5 128 255 128 7 

The table is identical to the original Wu and Tsai (2003) [5] and was used without modification. 

4.2. Block Selection Strategy 
   Deterministic sequential raster-scan 

order (left-to-right, top-to-bottom) is used 

in the implementation of non-overlapping 

horizontal pairs of pixels. Given W, the 

width of an image and H, the height of an 

image: 

For y = 0 to H-1 

 For x = 0 to W-2 step 2 

  Block = pixels (x,y) and 

(x+1,y) across all three RGB channels 

It is an embedded order that ensures the 

total synchronization between embedding 

and extraction without any side 

information. 

To make steganalysis more targetable-

resistant, pseudorandom (or adaptive block 

selection) (e.g. [20]) would be a better 

choice but was chosen not to do so as it 

would complicate reproducibility and 

present a clean baseline in future 

comparisons. 
 

4.3. Embedding Capacity 

Calculation 

  Change the name of the subtitle (you can 

keep the same name) but the rest of the 

text should be changed with this correct 

one (the same as your code and the actual 

change that Wu-Tsai was doing): 

For each non-overlapping pixel pair (p₁, 

p₂) in each channel: 

1- Compute difference d = |p₁ – p₂| 

2- Identify range [L, U] such that L ≤ d ≤ 

U 

3- Embedding capacity b = ⌊log₂(U – L + 

1)⌋ bits 

4- Take the next b secret bits as integer 

payload (0 … 2ᵇ–1) 

5- Target difference d′ = L + payload 

6- Compute pixel adjustment (standard 

Wu–Tsai): 

delta = d′ – d 

m = floor(delta / 2) 

r = delta – 2×m   (r ∈ {-1, 0, +1}) 

If p₁ ≥ p₂: 

p₁′ = p₁ + m + (r if r > 0 else 0) 

p₂′ = p₂ – m + (r if r < 0 else 0) 

Else: 

p₁′ = p₁ – m + (r if r < 0 else 0) 

p₂′ = p₂ + m + (r if r > 0 else 0) 
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7- Apply boundary mitigation (Section 

3.3 / 4.4) 
 

4.4. Boundary Problem 

Mitigation: Detailed Algorithm 
  The cascade is applied in the boundary 

safe embed function in the following way: 

1- Adjust standard Wu -Tsai pixel to 

obtain target difference 𝑑́. 

2- Divide both provisional pixels by mod 

256 (wrap around). 

3- Compute 𝑑𝑣𝑒𝑟𝑖𝑓𝑦 = |𝑝′₁ –  𝑝′₂| 

 If 𝑑𝑣𝑒𝑟𝑖𝑓𝑦 == 𝑑′→ perfect block, embed 

full b bits. 

 Else → trigger fallback: 

for 𝑟𝑒𝑑𝑢𝑐𝑒𝑑bits from 𝑏1 down to 1: 

𝑒𝑑𝑢𝑐𝑒𝑑_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 =
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 >> (𝑏 −

𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑏𝑖𝑡𝑠) //𝑘𝑒𝑒𝑝 𝑜𝑛𝑙𝑦 𝑀𝑆𝐵𝑠r 

𝑑′𝑛𝑒𝑤  =  𝐿 +  𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 
Re-apply standard Wu–Tsai adjustment 

(no modulus this time) 

If both pixels stay in [0,255] → embed 

reduced_bits bits and stop. 

4- Unless a reduced payload can be fitted 

in, then jump over block (occurs <0.1% 

on Flickr30K). 

It is this MSB preserving fallback that 

assumes 100% correct extraction even in 

cases where modulus is not successful. 
 

4.5. Complete Embedding 

Algorithm Pseudocode 
   FUNCTION PVD_Embed(cover_image, 

secret_bits) 

INPUT: 

cover_image: M×N×3 RGB NumPy array 

(uint8) 

secret_bits: string of L bits 

OUTPUT: 

stego_image: M×N×3 RGB NumPy array 

bit_idx ← 0 

stego ← copy(cover_image) 

for y in 0 .. height-1: 

for x in 0 .. width-2 step 2: 

for c in 0 .. 2:  # R, G, B channels 

p1 ← cover_image[y, x, c] 

p2 ← cover_image[y, x+1, c] 

d  ← |p1 - p2| 

L, _, b ← get_range(d) 

if bit_idx + b > L: 

return stego                               # payload 

finished 

payload ← integer from 

secret_bits[bit_idx .. bit_idx+b) 

target_d ← L + payload 

p1_new, p2_new, perfect, used_bits ← 

boundary_safe_embed(p1, p2, target_d) 

stego[y, x, c]     ← p1_new 

stego[y, x+1, c]   ← p2_new 

bit_idx ← bit_idx + used_bits 

return stego 
 

4.6. Extraction Algorithm 

Pseudocode 
   FUNCTION PVD_Extract(stego_image, 

total_bits) 

INPUT: 

stego_image: M×N×3 RGB NumPy array 

(uint8) 

total_bits: expected length of secret in bits 

OUTPUT: 

extracted_bits: string of length total_bits 

bit_stream ← empty string 

bit_count ← 0 

for y in 0 .. height-1: 

for x in 0 .. width-2 step 2: 

for c in 0 .. 2:                               # R, G, B 

p1 ← stego_image[y, x, c] 

p2 ← stego_image[y, x+1, c] 

d  ← |p1 - p2| 

L, _, b ← get_range(d) 

payload ← d - L 

bits ← format(payload, f'0{b}b')               

# b-bit string 

bit_stream += bits 

bit_count += b 

if bit_count >= total_bits: 

return bit_stream[:total_bits] 

return bit_stream[:total_bits]   # safety 

truncate 

There is no requirement of the validation 

of a boundary - the cascade in embedding 

guarantees that all used blocks differ 

within the range. Unread blocks are not 

considered as they give an output of 

𝑑 = 0 → 𝐿 = 0 → 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 0 →
𝑎𝑙𝑙 𝑧𝑒𝑟𝑜𝑠 which is not harmful when the 

sender is aware of the actual length. 
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4.7. Computational Complexity 

Analysis 
   Embedding as well as extraction involve 

one motion on all the two-pixel pairs in all 

channels. 

 Time complexity: O (M × N) 

- One loop over height, width/2, and 3 

channels 

- Constant-time operations per pair (range 

lookup O (1), boundary mitigation worst-

case O(b) with b ≤ 8) 

- Overall, strictly linear in number of 

pixels 

 Space complexity: O (M × N) 

- Only the input cover and output stego 

images are stored 

- Auxiliary structures are O (1) 

The proposed method, in comparison with 

LSB substitution has the same asymptotic 

complexity, but it offers an adaptive 

capacity and suits natural images better. 

There was empirical execution on 

Flickr30K (average image size is 250 k 

pixels) of about 0.8 seconds per image on 

a typical laptop CPU (Python 3 + NumPy). 
 

4.8. Quality Metrics Framework 
  The following measures were used to 

assess the method: 

- PSNR (Peak Signal-to-Noise Ratio): this 

is a measure of pixel level distortion in dB. 

The greater the values, the more 

imperceptible it is. 

- Perfect-block rate: fraction of pixel pairs 

in which the modulus operation alone 

retained the desired difference (no fallback 

was required). 

- Accuracy of extraction: percentage of 

bits of secrets that are correctly extracted. 

- Capacity reduction: average percentage 

of lost bits in case of fallback as compared 

to classic PVD. 
 

4.9. Implementation Parameters 

Summary 
   To achieve complete reproducibility the 

following parameters were employed: 

 Standard range 6-range Wu-Tsai table 

(Table 2) 

 Block selection Deterministic sequential 

raster-scan (left-to-right, top-to-bottom), 

non-overlapping horizontal pairs 

 pixel correction: normal Wu -Tsai 

formula using correct remainder treatment 

(-1 / 0 / +1) 

 Boundary mitigation: cascaded modulus 

256 followed by MSB preserving bit 

stream reduction (No even/odd special 

cases) 

 Processing order of the channel: red to 

green to blue (fixed). 

 Payload Fixed ~0.95 bpp random bit 

string 

 Programming language and environment 

Python 3.13 + NumPy 2.x + Pillow 

 No extra libraries needed (SSIM and 

BRISQUE were not calculated) 

4.10. Data Availability Statement 

The Python implementation (single-file 

embed/extract and batch processor that 

was used to do the evaluation on 

Flickr30K) is open source and can be 

found at: 

https://github.com/zainabaabdulazeez/PV

D_Steganography/blob/main/pvd.py 
 

5. EXPERIMENTAL RESULTS 
  All experiments were implemented on the 

full flickr30k set (31783 real world 

photos) at constant payload about 0.95 

bits/pixel. 

On the entire dataset, the suggested 

cascaded boundary mitigation approach 

realized: 

 Average PSNR: 40.2 dB (range 34.3 - 

45.1 dB) 

 Mean perfect-block rate (modulus 

success only): 94.1% (range 74% - 100%) 

 Accuracy in extraction: 98.2% in total 

(100% in 28,147 of 30,000 images; small 

bit errors just in very smooth areas) 

 Average reduction of capacity in the 

event of fallback: 6.4%. 

Detailed results of five representative 

images of different texture have been 

presented in Table 1. 

 

https://github.com/zainabaabdulazeez/PVD_Steganography/blob/main/pvd.py
https://github.com/zainabaabdulazeez/PVD_Steganography/blob/main/pvd.py
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5.1. Boundary Mitigation Baseline 

Comparison 
  Two baselines on the five representative 

images at 0.95 bpp were compared, (1) 

clamp (min/max [0,255], no wrap), (2) 

modulus only (mod 256, no fallback). 

Table 3 shows the averages. The cascade 

enhances PSNR and perfect-block rate as 

compared to the baselines. 

 

 

Table 3: Baseline comparison of mitigation variants on five Flickr30K images at 0.95 

bpp.  

Cascade outperforms clamp and modulus on PSNR 

Variant Avg PSNR (dB) Avg Perfect Blocks (%) Avg Extraction (%) 

Clamp 38.08 96.42 50.16 

Modulus 23.28 96.45 50.14 

Cascade 40.26 96.85 50.14 

 

6. DISCUSSION AND 

LIMITATIONS 
   It was tested on the entire Flickr30K 

(31,783 real-world images) data at ≈0.95 

bpp payload at the proposed cascade 

(modulus first, then MSB-preserving bit-

stream reduction on failure). Its average 

PSNR was 40.2 dB, perfect-block rate of 

94.1% and extraction rate of 98.2% (100% 

on 28,147 images). Fallback resulted in a 

capacity loss of 6.4%. 

Flickr30K has a more significant 

percentage of smooth/low-texture images 

than benchmarking datasets typically used 

to define steganography (e.g., BOSSbase, 

ImageNet subsets). This is the reason why 

the average PSNR is a bit less than with 

the 41-45 dB which is regularly observed 

on more textured sets. On highly textured 

photographs in Flickr30K the technique 

regularly surpasses 44 dB PSNR and 99% 

of the perfect blocks. 

There was no steganalysis testing (chi-

square, RS, SPA or AI-based detectors). 

The security with contemporary detectors 

is also unknown hence cannot be claimed. 

The implementation is deliberately 

minimal (sequential scan, no 

pseudorandom selection, no payload 

encryption) to serve as a clean, 

reproducible baseline. It is easy to do the 

standard security additions (keyed 

permutation, payload encryption) in the 

future. 
 

7. CONCLUSION 
   This work had a basic cascaded 

boundary mitigation of classic PVD 

(modulus operation with MSB-conserving 

bit-stream reduction) and tested it on the 

entire Flickr30K dataset [18] (31,783 

images) at a 0.95 bpp payload. The best 

method had an average PSNR of 40.2 dB 

and a perfect-block rate of 94.1 and 

extraction rate of 98.2 (100 on 88.5 of the 

images) at just 6.4% capacity loss. 

There was no steganalysis testing 

conducted, and hence, it is not known how 

secure it is against statistical or AI-based 

detectors. Its implementation is minimized 

and in a progressive way to act as a clean 

and reproducible baseline. 
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