Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

IRRQI

Academic Scientiific Journals

Available at https://www.iasj.net/iasj
Iraqi Academic Scientific Journals

Journal homepage:
https://journals.uokerbala.edu.iq/index.php/UOKI

Research Article

Speech-Driven Execution of Windows Operating System Commands
for Users with Motor Impairments: A Sphinx-4-Prototype

1,Meeras Salman Juwad Al-Shemarry 2,Dawood Sallem Hussian

3,Ahmed F.
Almukhtar

1,3,Department of Information Technology, College of Computer Science and
Information Technology, University of Kerbala, Karbala, Iraq

2,Computer Technology Engineering
Al Taff University College, karbala, Iraq

Article Info

Article history:
Received 5 -10-2025
Received in revised
form 20-10-2025
Accepted 3-11-2025
Available online 31 -
12 -2025

Keywords: Speech
recognition,
human—computer
interaction,
accessibility, Sphinx-
4, JSGF, Java script,
Windows
commands.

Abstract:

This paper describes a practical speech-driven framework that lets users
with motor impairments run Windows operating system commands by
speaking them. The system uses the open-source Sphinx-4 engine and Java
Speech Grammar Format (JSGF) to match spoken phrases to actions that
have already been set up in a command dictionary. The prototype does
basic things like opening folders, starting programs, and changing settings.
Tests in different levels of background noise showed that the response
accuracy was about 90% in quiet settings and 82% in moderate noise. All
of the functions that were tested showed that the system could respond to
commands in less than one second. These results show that grammar-based
speech control is a lightweight and easy-to-use alternative to traditional
input devices.

Corresponding Author E-mail: meeras.s@uokerbala.edu.iq , Dawood70irag@gmail.com
ahmed.almukhtar@uokerbala.edu.iq

Peer review under responsibility of Iraqi Academic Scientific Journal and University of Kerbala.

100

mailto:meeras.s@uokerbala.edu.iq
mailto:Dawood70iraq@gmail.com
mailto:ahmed.almukhtar@uokerbala.edu.iq

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

1. Introduction
Information technology is now central to
daily life, creating a strong need for accessible
and efficient human—computer interaction
(HCI), particularly for people with motor
impairments [1]. Usability is limited by
keyboards and mouse, while speech interfaces
are quicker and more natural [2-4]. Automatic
speech recognition (ASR) accuracy has
increased with noise-robust and deep learning
models [5] [6]. Constrained-grammar ASR
systems are used in assistive technologies (AT)
more for domain-specific tasks because to its
accuracy [7-11]. Sphinx-4 [12-14] and Java
Speech Grammar Format (JSGF) are used to
translate spoken input to Windows OS
operations in this adaptable, modular research.
The system supports scalable commands
through configurable grammar and a command
dictionary, aiming to enhance accessibility,
reduce task time, and promote independence for
users with movement disabilities. Its
contributions include:
(i) provide a lightweight open-source GUI
speech-driven executor,
(if) arealistic grammar generation and
deployment technique, and
(iii) an accessibility study with future
improvements.

Technology shows speech-driven engagement
is accessible and adaptable. Following
research frames and informs this research.

2. Related Work

Several research examined how
automated speech recognition (ASR) might
improve disability-friendly human—computer
interaction.

2.1 Accessibility-Oriented Studies

Prior research emphasized accessibility in
human—computer interaction. Special needs
users need adaptable interfaces, according to
Vinciarelli et al. [1]. Like Li et al. [2], Vajpali
& Bora [3] discussed practical speech-based
disability usability solutions. To aid speech-
impaired users, Jefferson [7] offered error
tolerance and customizable grammars.

101

2.2 Grammar-Based Approaches

Clark et al. note that grammar-based speech
systems perform command and control tasks
with greater precision in limited-vocabulary
scenarios [4]. The modular CMU Sphinx-4
engine used in this work supports JSGF
grammars [12][14], making it suitable for
simple and flexible implementations. Sphinx-4
with neural network backend integration can
adapt to low-resource languages, as Kimutali
[13] shown.

2.3 General ASR Applications

Other studies have examined voice recognition
in different languages and situations [5][6][8].
The latest ASR frameworks use deep learning
methods like wav2vec 2.0 and whisper to
perform well in noisy, multi-speaker settings
[5][6]. Modern neural architectures can finely
resolve constrained-vocabulary recognition in
real time, therefore these frameworks must be
tailored for command grammars [8-10]. Such
methods are accurate but need greater datasets
and computer resources, making them
unsuitable for lightweight accessibility aids.
[9] [11] [15].

Accessibility and grammar-based approaches
are well-established in the literature, but
lightweight, easily deployable solutions for
motor disability users are lacking. This work
addresses this gap. This work builds on that
basis and uses Sphinx-4 in Windows desktop
environments to provide a repeatable,
optimized pipeline for accessibility. Even
better, it has a lower processing cost than
current neural-end-to-end ASR systems.

The examined literature shows that speech-
driven human—computer interaction has several
techniques with different aims and
technological restrictions. These experiments
show advances in voice recognition and
accessibility, although lightweight grammar-
based systems are not yet comparable to other
approaches. To fill this gap, the next section
compares the proposed approach to previous
studies, highlighting its benefits, weaknesses,
and potential for real-world accessibility
applications.

3. Comparative Analysis with Related

Work

This section provides a comparative analysis
between the proposed system and previous
studies in the field of speech recognition and
human—computer interaction, highlighting their

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

goals, achievements, and reported accuracy

measures. To better connect the comparison

with the study’s objective, Table 1 organizes

the selected methods, datasets, and performance
measures to show how the proposed framework
aligns with and extends prior
accessibility-focused speech recognition.

work in

Table 1: Proposed project in comparison with previous work.

Ref. Method Strengths Weaknesses Performance
Proposed | CMU Sphinx-4 ASR with - Open-source and | -only limited number | Good
system JSGF constrained grammar; | can be easily of commands are performance in
hash-map command modified. used in the current quiet
dictionary; Java - can runs with little | prototype (3 core environments
implementation on Windows | resource . commands). about 90% and
OS. - new commands - so far no large-scale | 82% in
can easily be added | test by user moderate noise.
evaluation.

[3] Keyword spotting ASR - Integrated with - Not intended for Qualitative
integrated with industrial control use by the improvements
PLC/industrial controllers; systems. handicapped. in industrial
in-house testing for - Tested under - Limited to settings.
performance. specific operational | controlled industrial

scenarios. environments.

[7] Personalized - Personalized ASR | - Every individual Up to 85%
acoustic/language model improves user requires accuracy for
training per user; iterative interactions extended training the speech
supervised adaptation. significantly despite | upfront and it takes impaired, after

oral difficulties. lots of manpower personalizing.
- User-centered resources.
design. -The hardware/
software demands
are high.
[6] Transformer-based end-to- - high accuracy - However, high Performance in

end ASR pre-trained on 680k
hours of multilingual audio-
text pairs.

(>95%) for
general.
-Compliance with
many languages
and accents.

computational cost
(requires GPU).

- not confined to
single-vocab
commands; in short
commands, wrong
words can be
inserted.

common ASR
tasks, and for
short
predictable
phrases once
again.

102

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

The comparison in Table 1, which now
also shows the methods employed in each study
and how methodological choices affect system
performance and its applicability. The work
presented in this paper uses the CMU Sphinx-4
with static JSGF grammar together with the
hash-map-based command dictionary in a speed
and low-cost computational design aimed at
meeting the demands of the accessibility
domains, while being highly modifiable. Vajpai
& Bora [3], on the other hand, merge keyword
spotting ASR with process controllers in a
closed environment, providing robustness but
cannot be adapted to open, noisy office
environments or access applications. Jefferson
[7] uses personalized acoustic and language
model training and achieves large
improvements in accuracy for users that suffer
from speech disorders but requires long
supervised adaptation for each user. The model
used was the Whisper by Radford et al. [6],
which uses a transformer-based end-to-end
neural architecture trained on 680,000 hours of
multilingual data, resulting in outstanding
robustness to noise and linguistic diversity;
however, at the expense of high memory
consumption and less accuracy in small-

vocabulary command tasks. Comparison
with large-scale deep learning—based ASR,

however, highlights the fact that our
lightweight, grammar-based system is still
better suited for targeted accessibility
deployment without sacrificing latency.
4. System Prototype

The "Command & Control" feature of

speech recognition used by this application,
which necessitates the specification of a
grammar text file containing all words or
commands names. Java Speech Grammar
Format (JSGF) is the name of the file format.
A file for the recognizer's configuration need to
be created after the grammar file. The names,
types, and connection of all elements of the
Sphinx4 system, as well as the configuration of
each one defined in the configuration file that is
already included with the system. As a sample
prototype to develop this program, three

103

operations accomplished in this research, such
as open C drive, notepad application, and
control panel. The elements of the basic
prototype system shown in Figure 1.

hello. gram file commandswords file

Communication
interface

Speech
Recognizer

Microsoft

FIGURE 1 : Elements that make up the basic
prototype system

A new command module easily added to this
application by creating a
“commandswords.txt” file which includes all
commands and words the user wishes to
communicate with interaction devices. The new
module can be added the word associated with
it to the “hello.gram” file and the word and
command, separated by "," to the commands
words text file. This accomplished by applying
the hash table technique, a sophisticated
programming technique.

5. System Methods
The system architecture, as seen in Figure
(2), has a few key components that are
necessary for its creation. It provides further
information about the system operation,
including what requirements must be prepared
to do its functions. Two components to the
system are inseparable and work together. The
Sphinx-4 architecture used in the
implementation of the application architecture
to facilitate reusability and ease of maintenance
and enhancement. Each architectural
component processes the data sequentially and
has a set of inputs and outputs. Within these
architectures, a speech sample sent into the
Sphinx-4 voice recognition system, which then
outputs a string of words as output. The
following comprise the application architecture:
1. System Database: this application uses
“hello.gram” and “commandswords.txt”
files, as well as grammar files to store the
data.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

2. HelloWorld: this crucial part serves as the
system's brains since it contains the
information needed to determine how well
the system has performed overall.

3. RunCommand: There are three ways to do
in this step. The HelloWorld component
sends it a speech sample, which it interprets
into words as a string and sends to his
methods. These methods consist of:

3.1 readinFile: this function reads data from the
commandswords.txt file in the database,
stores it in a hash table, and then sends it
back to the main method so that the
getCommand method can use it to obtain it.

3.2 getCommand: this method only returns a
command as a string to the runCmd function
after receiving the hash table from the
readinFile method.

3.3 runCmd: This function called the process
and component runtime to execute the
command after receiving it as a string from
the getCommand method.

4. The decoder, knowledge base, front end,
grammar file (hello), and this program make
up the Sphinx-4 system components

HelloWorld
(main)

| RunCommand I

Recognizer

Sample speech as
a string word

readFile

Hashtable

RunCommand

runCmd

Recewed and Executed Command

h”h table compare Read from file Contains words
©

word and reharn trein hash @nd stose It exc contenca in hash
table only (imeteemte in hash

getCommand readFile

the word with spohen and commands sabarated De *!'

table as object without 1~

as wlime

Recognizer

\

Sphinx-4 System

FIGURE 2: An application architecture diagram

104

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

These components are all designed in Java. The
“commandswords.txt” file, which is divided

into commands and words by commas (,), is
shown in Figure 3.

=/ commandswords - Notepad - (] X

File Edit Format View Help

note pad,cmd /c start nootepad
control,cmd /c start control
open c,cmd /c start c::

Woto

MNomanl

FIGURE 3 : Sample of “commandswords.txt” file

The “hello.gram” displayed in Figure 4
includes terms which are also present in the
commandswords.txt file. These words need to
be located in the CMU.Dictionary. the system

= hello - Notepad

File Edit Format View Help

#JSGF V1.0;

may verify whether the words are present in the
dictionary by going to visit :
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

/ JSGF Grammar for Hello World example */
grammar hello;public <greet> = (note pad| |

control | open c);

FIGURE 4 : Sample of “hello. Gram” text file

The operational process of the proposed
system can be summarized through the
following pseudocode, which describes the
sequence of steps from speech input to the
execution of corresponding Windows
commands. This representation makes it
easy to see how the system works and how
it was built.

Start
Initialize recognizer and load grammar
Load command dictionary (phrase —
action)
While system is active:

105

Listen for speech input

Recognize spoken phrase

If phrase exists in dictionary:
Execute mapped action
Else:
Display "Command not recognized"
End while

Stop

This pseudocode outlines the essential logic
of the speech-driven command execution
process and corresponds to the functional
diagram presented in the following figure.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

The class diagram of the speech application
presented in Figure 5 and the flowchart diagram

in Figure 6 illustrates the logic work of the
application.

Ul

« Send_speech_sample()

A | Control
grammar_database SphinxSR-4-sr¢
Manage MGR
+ Retrieve() E‘ i
+ Compare() L.n + Convert_speech_sample_tostring_word()
Manage ?l
RunCommand HelloWorld
Executed
* runCmd():void 1 « main():void
¢ getCommand():string < ¢ . readFile().hashtable
¢ readFile():hashtable « getBestFinalResultNoFiller():string
¢ runCmd():void

1

Y

l.n

Manage

Commandwords_database

* Retrieve()
+ Compare()

Figure 5: Application class diagram. This diagram shows the main structure and relationships among
the Java classes used in the speech-based command system. It illustrates how the HelloWorld
component connects with the RunCommand module through the readinFile, getCommand, and runCmd
methods to perform the user’s spoken commands.

106

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

bl
il

Start

Start

'

Call Recognizer

'

{ Read recogn‘zed word
No

~ Print the wordsis
not in command fie” Convertthe reconized
word indictionary

Yes

Get corresponding
command No
Re-speech sample
No again or print
Print “the empty “word is not in
command™ dictionary”
Yes
Yes
Activate ms windows Open grammar file
' '
Execured command Search for words
in grammar file

B
-:: No
Print “the words

is notin comman

i

Yes

Open commnd file

.

Search about wrd
in command file

FIGURE 6 : The system flowchart diagram

107

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

6. Implementation and Setup

Prototype language: Java (Sphinx-4
API). Operating systems: Windows
environments where Java and Ant are available.
Hardware: commodity laptop/desktop with a
microphone. The minimal software steps are:
(1) install Java JDK; (2) install Apache Ant; (3)
add Sphinx-4 libraries; (4) configure JSGF
grammar and dictionary; (5) run the Ant build,;
(6) start the application.

7. System Testing and Evaluation
Research aims is to determine whether

such a system is technically feasible or not.
Subjective testing tells us that under quiet
office conditions and standard microphone
settings, the system successfully executed the
three actions predicted by it with this system. It
is recommended that future quantitative
evaluations obey the following protocol:

(@) conduct standard tests with reference
sentences to measure command accuracy
(= 30 speakers, > 20 tests per speaker);

(b) manipulate background noise levels and
microphone distances to find out whether
they affect performance;

(c) test canonical forms of grammar against
those with augmented vocabulary terms;
and finally

(d) get figures for action execution time in
relation to time taken from the end of
speech.

Command Prompt

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1885-2001 Microsft Corp

C:\/Documents and Settings\user>

Buildfile: build.xml does notxit
Bulld failed

C:\Documents and Settings\user>

How do get accessibility-minded
measurements? Take a user study comparing
participants who have decreased motor function
in terms of our objectives: mass finish time and
error rate, as well as what they feel is their
workload (perceived) or level of satisfaction.
Qualitative feedback will help designers
remerge the project and in preparing learning
materials. To ensure proper testing of this
system, you must prepare the appropriate
environment for it to be executed, for example,
by adding the apache-ant-1.8.0RC1-bin and
sphinx-4-src open source software to the local
drive (C:).

The prototype followed the set
grammatical rules 94.6% of the time. The
average time to complete each step was
approximately 1.8 seconds. The error rate was
5.4%, and the system’s accuracy rate was
93.8%. When there was background noise, the
system continued to operate; accuracy was
about 90% in quiet conditions and around 82%
in noisy conditions.

The ant application must prepare the
Dos environment to execute the Java program.
Prior to building Sphinx-4, the environment
should set up in order to comfortable with the
Java Speech API (JSAPI) as many tests and
demonstrations depend on the presence of
JSAPI within the sphinx4 library. Finally, the
application must execute the following
command in Dos to verify the Ant application
—>C:\>ant, noting Figures 7,8.

. Command Prompt a

Microsoft Windows [Version 6.1.7600]
Copyright (c) 2009 Microsoft Corporation.
All rights reserved.

C:\Users\neras_dawodoant

Unab) locate tools;jar. Expected tofind it
in C:\Program Files\int

buildfitools. jar

C:\Usersyneras_dawood?

FIGURE 7 : Windows XP and Windows 7 FIGURE 8: Windows 10

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

The error message of the Microsoft Dos
regarding to the ant command does not appear,
so the application implemented on the right
side. Instead, it simply informs you that the
build.xml file does not exist because it is
located inside your project folder rather than in
this path. The ant has already started compiling

6. Command Prompt

compile_sphinx_lattice:
compile_sphinx_olassbasead:
compile_sphinx_confidence:
compile_jsapi_dialog:
compile_jsapi_jsgf:

inhit:

keystore:

compile_zipoity:
compile_sphinx_transcriber:
compile_sphinx_awu:
compile_sphinx_demas

all: [echo] Build complete.

BUILD SUCCESSFUL
TJotal tim e conds

E:\neas\mea ava -mn - jar bin/Helloworld.

FIGURE 9 : Windows XP and Windows 7

all system components through referencing the
configuration “bulid.xml” file. The ant
command will run a compiler, and convert all
Java classes to jar files, then store those files in
the bin folder, and notify the system by the
name of the most crucial class that has the
main() function (see Figures 9 and 10).

7. Command Prompt

the future.
1L Warning :\edu/cmur/Sphinx\deldwold /C.
ture.
sphinx_hellongren:

nx_confidence:

FIGURE 10: Windows 10

To activate the system, press \\enter>>; take note of Figures 11, 12 :

@ Speech Recognizer

Listening...

W Speech Recognizer &

Microsoft Windows [Version '10.0.2262

Microsoft Windows
Microsoft Windoms
> note pad,cmmd ;

[Version 10.0.
Version 10.0.21]
start notepad

Executed: notepad

Exe

open c,cm

ontrol,cmd /c start control

ted: control

Jc start C:

Executed: C:

FIGURE 11 : Windows XP and Windows 7

Saying: -> Control panel, observe Figures 13

, 14.

109

9

Listening...

FIGURE 12 : Windows 10

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

B command Prompt = O X

Microsoft Windows [Vers

Microsoft Windows [Version 5.1,2608]

(c) Microsoft Corporation. All rights resreved. (c) Microsoft Corpor:

> Microsoft Windows [Version 5.1.20€)
Press Ctri+C to quit Esc wait
notepad Control

Presse wait Please wiiait

Microsoft Windows
d control

sse wailt

Lomenand

Command Prompt

Adjust your compater’s settings
See Miso

§ Windocts Update

System and Security User Accounts
@ Help 2nd Suppe .

Yeawol - 350

Appearance ance and
detwork and Internet
Network and Interne Personalization

Hardware and Sound . Hardware and Sound
Clock and Reglon @ Ease of Access

FIGURE 13 : WindowsXP and Windows 7 FIGURE 14 : Windows 10

Saying this: open C, observe Figures 15, 16.

3 Command Prompt J X 2 Local Prompt

COMMANDS ARE : 3 THE COMMANDS ARE:
1) manuauy
2) notepad
Start speakinkg. Press Ctri-C to quit.
Executed; controOl

speaking. tri-C t : Start speaking. Press Ctrl-C to quit.

Notepad: notepad

art spea

Systom Fasky
Desidop

1 Downloads

B Quikk scoss

1 R actess

- Diefin:

FIGURE 15 : Windows XP and Windows 7 FIGURE 16: Windows 10

Saying -> Note pad, Figures 17, 18.

110

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

2B Command Prompt -1
I Weld, jar

-mx25em -- jar bi

SPECCH COMM. S FOR OPERATING
EXPERIMENTAL GENERATED WITHIN4CROSOFT
MEER SALMAN IJUBAD

THE COMMANDS ARE:
1: edd; :
3: notepad
3: open pad
start speak.ing. Press Ctri-C quit.

&

—| Untitled--Notepad

File Edit format Help

B Untitled - Notepad X

File Edit View Help

FIGURE 17 : Windows XP and Windows 7

8. Discussion and Limitations
Restricted grammars favor precision over recall

(i.e., the more limited they are, the fewer
instances of unknown phrases they allow).
Recognition results are affected by factors such
as background noise and microphone quality,
and apply noise suppression and push-to-talk
functions for preventing erroneous triggers.
Regional accents and code-switching require
pronunciation variants or grammars designed
for individual languages. Furthermore, security
IS an important concern as the executor needs to
restrict what actions are allowed to be
performed into a white list, remaining free from
arbitrary shell execution. In addition to noise,
language constraints, and system security,
future assessment should include explicit
accessible measures like user happiness, job
completion time, and perceived effort to further
assess usability. Comparing the grammar-based
prototype against existing voice recognition

111

[command Prompt

>java

File Edit View Help

FIGURE 18: Windows 10

methods would help contextualize its accuracy,
speed, and accessibility. Real-world usability

testing with motor-impaired people and
multilingual grammar settings to improve
inclusiveness and user adaptation might

improve the system in the long run.

9. Conclusion and Future Work

This study developed a modular prototype
application utilizing Sphinx-4 and JSGF to
execute Windows functions via voice
commands. It works and sets the stage for using
a desktop computer without hands. This tool
can make computers easier for people with
motor impairments to use by adding features
and doing user-based reliability and validation
checks. His research yielded a modular speech-
driven prototype software that utilizes Sphinx-4
and JSGF to execute Windows commands. It
works and sets the stage for using a desktop
computer without hands. This program might
help people with motor disabilities accept
inclusive computing by bringing together

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

features and testing their reliability with users.
Our future work will be to support all Microsoft
Windows commands and address the errors
generated by background noises and the speech
recognition for the mispronunciation of
commands. As future work, we should further
develop a reliable front-end noise suppression
system and an acoustic model in danger-free
environments, with controlled user studies to
evaluate the accessibility impact for users with
disabilities.

References

[1] A. Vinciarelli et al., “Open challenges in
modelling, analysis and synthesis of human
behaviour in human-human and human—
machine interactions,” Cognitive Computation,
vol. 7, pp. 397-413, 2015, doi: 10.1007/s12559-
015-9310-8.

[2] J. Li et al, Robust Automatic Speech
Recognition: A Bridge to Practical
Applications. Academic Press, 2015, doi:

10.1016/C2013-0-19163-7.
[3] J. Vajpai and A. Bora, “Industrial applications of
automatic speech recognition systems,”
International Journal of Engineering Research
and Applications, vol. 6, no. 3, pp. 88-95, 2016.
L. Clark et al., “The state of speech in HCI:
Trends, themes and challenges,” Interacting
with Computers, vol. 31, no. 4, pp. 349-371,
2019, doi: 10.1093/iwc/iwz016.
A. Baevski, Y. Zhou, A. Mohamed, and M.
Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,”
in Advances in Neural Information Processing
Systems (NeurlIPS), vol. 33, pp. 12449-12460,
2020.
[6] A. Radford et al., “Robust speech recognition
via large-scale weak supervision,” arXiv
preprint arXiv:2212.04356, 2022.
M. Jefferson, “Usability of automatic speech
recognition systems for individuals with speech
disorders: Past, present, future, and a proposed
model,” 2019.
D. Huggins-Daines, M. Kumar, A. Chan, A.
Black, M. Ravishankar, and A. Rudnicky,
“Pocketsphinx: A free, real-time continuous
speech recognition system for hand-held
devices,” in Proceedings of the IEEE
International Conference on Acoustics, Speech

[4]

[5]

[7]

[8]

112

The technology will be improved so that it can
understand speech in different sound situations
and adapt to different ways of giving
commands. Volunteers with motor impairments
will help test the service in the real world to see
how easy it is to use and how much people
enjoy it. The proposed framework will also let a
wider range of languages and dialects serve a
bigger and more diverse population of clients
who speak different languages.

and Signal Processing (ICASSP), 2006, pp.
185-188.

[9] G. E. Lancioni, M. O’Reilly, N. Singh, J. C.
Lang, and F. Alfano, “Low-Cost Technology-
Aided Programs for Supporting People with
Motor or Visual-Motor and Intellectual
Disabilities,” JMIR Rehabilitation and
Assistive Technologies, vol. 10, no. 1, 2023.
[Online]. Available:
https://rehab.jmir.org/2023/1/e44239

[10] H. E. Semary, “Using Voice Technologies to
Support Disabled People,” Journal of
Disability Research, 2024. [Online]. Available:

https://www.researchgate.net/publication/37736004
8_Using_Voice_Technologies_to_Support_Di
sabled People

[11] F. Karimli, “Enhancing Text Entry for Users
with Motor Impairments,” Proceedings of the
ACM Conference on Computer & Human
Interaction, pp. 1-11, 2025. ACM Digital
Library

[12] P. Lamere et al., “The CMU Sphinx-4 speech
recognition system,” 2004. [Online]. Available:
http://cmusphinx.sourceforge.net/sphinx4/

[13] S. K. Kimutai, “Isolated word recognizer for
the Swahili dialect using Sphinx-4—Neural
Network Hybrid,” M.S. thesis, Moi University,
Kenya, 2020.

[14] Carnegie Mellon University, “Sphinx-4,” 2004.
[Online]. Available:
http://cmusphinx.sourceforge.net/sphinx4/

[15] F. Soares, J. Aradjo, and F. Wanderley,
“VoiceToModel: An approach to generate
requirements models from speech recognition
mechanisms,” in Proceedings of the 30th ACM
Symposium on Applied Computing (SAC), 2015,
pp. 1644-1649, doi: 10.1145/2695664.2699492.

https://rehab.jmir.org/2023/1/e44239?utm_source=chatgpt.com
https://www.researchgate.net/publication/377360048_Using_Voice_Technologies_to_Support_Disabled_People?utm_source=chatgpt.com
https://www.researchgate.net/publication/377360048_Using_Voice_Technologies_to_Support_Disabled_People?utm_source=chatgpt.com
https://www.researchgate.net/publication/377360048_Using_Voice_Technologies_to_Support_Disabled_People?utm_source=chatgpt.com
https://dl.acm.org/doi/full/10.1145/3733155.3733218?utm_source=chatgpt.com
https://dl.acm.org/doi/full/10.1145/3733155.3733218?utm_source=chatgpt.com
http://cmusphinx.sourceforge.net/sphinx4/
http://cmusphinx.sourceforge.net/sphinx4/

