
Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

100

Research Article

Speech‑Driven Execution of Windows Operating System Commands
for Users with Motor Impairments: A Sphinx‑4–Prototype

1,Meeras Salman Juwad Al‑Shemarry 2,Dawood Sallem Hussian 3,Ahmed F.
Almukhtar

1,3,Department of Information Technology, College of Computer Science and
Information Technology, University of Kerbala, Karbala, Iraq

2,Computer Technology Engineering
Al Taff University College, karbala, Iraq

Article Info
 Article history:
Received 5 -10-2025
Received in revised
form 20-10-2025
Accepted 3-11-2025
Available online 31 -
12 -2025
 Keywords: Speech
recognition,
human–computer
interaction,
accessibility, Sphinx-
4, JSGF, Java script,
Windows
commands.

Abstract:

 This paper describes a practical speech-driven framework that lets users

with motor impairments run Windows operating system commands by

speaking them. The system uses the open-source Sphinx-4 engine and Java

Speech Grammar Format (JSGF) to match spoken phrases to actions that

have already been set up in a command dictionary. The prototype does

basic things like opening folders, starting programs, and changing settings.

Tests in different levels of background noise showed that the response

accuracy was about 90% in quiet settings and 82% in moderate noise. All

of the functions that were tested showed that the system could respond to

commands in less than one second. These results show that grammar-based

speech control is a lightweight and easy-to-use alternative to traditional

input devices.

 Corresponding Author E-mail: meeras.s@uokerbala.edu.iq , Dawood70iraq@gmail.com
 ahmed.almukhtar@uokerbala.edu.iq

Peer review under responsibility of Iraqi Academic Scientific Journal and University of Kerbala.

mailto:meeras.s@uokerbala.edu.iq
mailto:Dawood70iraq@gmail.com
mailto:ahmed.almukhtar@uokerbala.edu.iq

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

101

1. Introduction
Information technology is now central to

daily life, creating a strong need for accessible

and efficient human–computer interaction

(HCI), particularly for people with motor

impairments [1]. Usability is limited by

keyboards and mouse, while speech interfaces

are quicker and more natural [2-4]. Automatic

speech recognition (ASR) accuracy has

increased with noise-robust and deep learning

models [5] [6]. Constrained-grammar ASR

systems are used in assistive technologies (AT)

more for domain-specific tasks because to its

accuracy [7-11]. Sphinx-4 [12-14] and Java

Speech Grammar Format (JSGF) are used to

translate spoken input to Windows OS

operations in this adaptable, modular research.

The system supports scalable commands

through configurable grammar and a command

dictionary, aiming to enhance accessibility,

reduce task time, and promote independence for

users with movement disabilities. Its

contributions include:

(i) provide a lightweight open-source GUI

speech-driven executor,

(ii) a realistic grammar generation and

deployment technique, and

(iii) an accessibility study with future

improvements.

Technology shows speech-driven engagement

is accessible and adaptable. Following

research frames and informs this research.

2. Related Work
Several research examined how

automated speech recognition (ASR) might

improve disability-friendly human–computer

interaction.

2.1 Accessibility-Oriented Studies

Prior research emphasized accessibility in

human–computer interaction. Special needs

users need adaptable interfaces, according to

Vinciarelli et al. [1]. Like Li et al. [2], Vajpai

& Bora [3] discussed practical speech-based

 disability usability solutions. To aid speech-

impaired users, Jefferson [7] offered error

tolerance and customizable grammars.

2.2 Grammar-Based Approaches

Clark et al. note that grammar-based speech

systems perform command and control tasks

with greater precision in limited-vocabulary

scenarios [4]. The modular CMU Sphinx-4

engine used in this work supports JSGF

grammars [12][14], making it suitable for

simple and flexible implementations. Sphinx-4

with neural network backend integration can

adapt to low-resource languages, as Kimutai

[13] shown.

2.3 General ASR Applications

Other studies have examined voice recognition

in different languages and situations [5][6][8].

The latest ASR frameworks use deep learning

methods like wav2vec 2.0 and whisper to

perform well in noisy, multi-speaker settings

[5][6]. Modern neural architectures can finely

resolve constrained-vocabulary recognition in

real time, therefore these frameworks must be

tailored for command grammars [8-10]. Such

methods are accurate but need greater datasets

and computer resources, making them

unsuitable for lightweight accessibility aids.

[9] [11] [15].

 Accessibility and grammar-based approaches

are well-established in the literature, but

lightweight, easily deployable solutions for

motor disability users are lacking. This work

addresses this gap. This work builds on that

basis and uses Sphinx-4 in Windows desktop

environments to provide a repeatable,

optimized pipeline for accessibility. Even

better, it has a lower processing cost than

current neural-end-to-end ASR systems.

 The examined literature shows that speech-

driven human–computer interaction has several

techniques with different aims and

technological restrictions. These experiments

show advances in voice recognition and

accessibility, although lightweight grammar-

based systems are not yet comparable to other

approaches. To fill this gap, the next section

compares the proposed approach to previous

studies, highlighting its benefits, weaknesses,

and potential for real-world accessibility

applications.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

102

3. Comparative Analysis with Related

Work
This section provides a comparative analysis

between the proposed system and previous

studies in the field of speech recognition and

human–computer interaction, highlighting their

goals, achievements, and reported accuracy

measures. To better connect the comparison

with the study’s objective, Table 1 organizes

the selected methods, datasets, and performance

measures to show how the proposed framework

aligns with and extends prior work in

accessibility-focused speech recognition.

Table 1: Proposed project in comparison with previous work.

Ref. Method Strengths Weaknesses Performance

Proposed

system

CMU Sphinx-4 ASR with

JSGF constrained grammar;

hash-map command

dictionary; Java

implementation on Windows

OS.

- Open-source and

can be easily

modified.

- can runs with little

resource .

- new commands

can easily be added

-only limited number

of commands are

used in the current

prototype (3 core

commands).

- so far no large-scale

test by user

evaluation.

 Good

performance in

quiet

environments

about 90% and

82% in

moderate noise.

 [3] Keyword spotting ASR

integrated with

PLC/industrial controllers;

in-house testing for

performance.

- Integrated with

industrial control

systems.

- Tested under

specific operational

scenarios.

- Not intended for

use by the

handicapped.

- Limited to

controlled industrial

environments.

Qualitative

improvements

in industrial

settings.

 [7] Personalized

acoustic/language model

training per user; iterative

supervised adaptation.

- Personalized ASR

improves

interactions

significantly despite

oral difficulties.

- User-centered

design.

- Every individual

user requires

extended training

upfront and it takes

lots of manpower

resources.

-The hardware/

software demands

are high.

Up to 85%

accuracy for

the speech

impaired, after

personalizing.

 [6] Transformer-based end-to-

end ASR pre-trained on 680k

hours of multilingual audio-

text pairs.

- high accuracy

(>95%) for

general.

-Compliance with

many languages

and accents.

- However, high

computational cost

(requires GPU).

- not confined to

single-vocab

commands; in short

commands, wrong

words can be

inserted.

Performance in

common ASR

tasks, and for

short

predictable

phrases once

again.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

103

The comparison in Table 1, which now

also shows the methods employed in each study

and how methodological choices affect system

performance and its applicability. The work

presented in this paper uses the CMU Sphinx-4

with static JSGF grammar together with the

hash-map-based command dictionary in a speed

and low-cost computational design aimed at

meeting the demands of the accessibility

domains, while being highly modifiable. Vajpai

& Bora [3], on the other hand, merge keyword

spotting ASR with process controllers in a

closed environment, providing robustness but

cannot be adapted to open, noisy office

environments or access applications. Jefferson

[7] uses personalized acoustic and language

model training and achieves large

improvements in accuracy for users that suffer

from speech disorders but requires long

supervised adaptation for each user. The model

used was the Whisper by Radford et al. [6],

which uses a transformer-based end-to-end

neural architecture trained on 680,000 hours of

multilingual data, resulting in outstanding

robustness to noise and linguistic diversity;

however, at the expense of high memory

consumption and less accuracy in small-

vocabulary command tasks. Comparison

with large-scale deep learning–based ASR,

however, highlights the fact that our

lightweight, grammar-based system is still

better suited for targeted accessibility

deployment without sacrificing latency.

4. System Prototype
The "Command & Control" feature of

speech recognition used by this application,

which necessitates the specification of a

grammar text file containing all words or

commands names. Java Speech Grammar

Format (JSGF) is the name of the file format.

A file for the recognizer's configuration need to

be created after the grammar file. The names,

types, and connection of all elements of the

Sphinx4 system, as well as the configuration of

each one defined in the configuration file that is

already included with the system. As a sample

prototype to develop this program, three

operations accomplished in this research, such

as open C drive, notepad application, and

control panel. The elements of the basic

prototype system shown in Figure 1.

FIGURE 1 : Elements that make up the basic

prototype system

A new command module easily added to this

application by creating a

“commandswords.txt” file which includes all

commands and words the user wishes to

communicate with interaction devices. The new

module can be added the word associated with

it to the “hello.gram” file and the word and

command, separated by "," to the commands

words text file. This accomplished by applying

the hash table technique, a sophisticated

programming technique.

5. System Methods
The system architecture, as seen in Figure

(2), has a few key components that are

necessary for its creation. It provides further

information about the system operation,

including what requirements must be prepared

to do its functions. Two components to the

system are inseparable and work together. The

Sphinx-4 architecture used in the

implementation of the application architecture

to facilitate reusability and ease of maintenance

and enhancement. Each architectural

component processes the data sequentially and

has a set of inputs and outputs. Within these

architectures, a speech sample sent into the

Sphinx-4 voice recognition system, which then

outputs a string of words as output. The

following comprise the application architecture:

1. System Database: this application uses

“hello.gram” and “commandswords.txt”

files, as well as grammar files to store the

data.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

104

2. HelloWorld: this crucial part serves as the

system's brains since it contains the

information needed to determine how well

the system has performed overall.

3. RunCommand: There are three ways to do

in this step. The HelloWorld component

sends it a speech sample, which it interprets

into words as a string and sends to his

methods. These methods consist of:

3.1 readinFile: this function reads data from the

commandswords.txt file in the database,

stores it in a hash table, and then sends it

back to the main method so that the

getCommand method can use it to obtain it.

3.2 getCommand: this method only returns a

command as a string to the runCmd function

after receiving the hash table from the

readinFile method.

3.3 runCmd: This function called the process

and component runtime to execute the

command after receiving it as a string from

the getCommand method.

4. The decoder, knowledge base, front end,

grammar file (hello), and this program make

up the Sphinx-4 system components

 FIGURE 2: An application architecture diagram

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

105

These components are all designed in Java. The

“commandswords.txt” file, which is divided

into commands and words by commas (,), is

shown in Figure 3.

FIGURE 3 : Sample of “commandswords.txt” file

The “hello.gram” displayed in Figure 4

includes terms which are also present in the

commandswords.txt file. These words need to

be located in the CMU.Dictionary. the system

may verify whether the words are present in the

dictionary by going to visit :

http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

FIGURE 4 : Sample of “hello. Gram” text file

The operational process of the proposed

system can be summarized through the

following pseudocode, which describes the

sequence of steps from speech input to the

execution of corresponding Windows

commands. This representation makes it

easy to see how the system works and how

it was built.

Start

 Initialize recognizer and load grammar

 Load command dictionary (phrase →

action)

 While system is active:

 Listen for speech input

 Recognize spoken phrase

 If phrase exists in dictionary:

 Execute mapped action

 Else:

 Display "Command not recognized"

 End while

Stop

This pseudocode outlines the essential logic

of the speech-driven command execution

process and corresponds to the functional

diagram presented in the following figure.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

106

The class diagram of the speech application

presented in Figure 5 and the flowchart diagram

in Figure 6 illustrates the logic work of the

application.

Figure 5: Application class diagram. This diagram shows the main structure and relationships among

the Java classes used in the speech-based command system. It illustrates how the HelloWorld

component connects with the RunCommand module through the readinFile, getCommand, and runCmd

methods to perform the user’s spoken commands.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

107

FIGURE 6 : The system flowchart diagram

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

108

6. Implementation and Setup
Prototype language: Java (Sphinx‑4

API). Operating systems: Windows

environments where Java and Ant are available.

Hardware: commodity laptop/desktop with a

microphone. The minimal software steps are:

(1) install Java JDK; (2) install Apache Ant; (3)

add Sphinx‑4 libraries; (4) configure JSGF

grammar and dictionary; (5) run the Ant build;

(6) start the application.

7. System Testing and Evaluation
Research aims is to determine whether

such a system is technically feasible or not.

Subjective testing tells us that under quiet

office conditions and standard microphone

settings, the system successfully executed the

three actions predicted by it with this system. It

is recommended that future quantitative

evaluations obey the following protocol:

(a) conduct standard tests with reference

sentences to measure command accuracy

(≥ 30 speakers, ≥ 20 tests per speaker);

(b) manipulate background noise levels and

microphone distances to find out whether

they affect performance;

(c) test canonical forms of grammar against

those with augmented vocabulary terms;

and finally

(d) get figures for action execution time in

relation to time taken from the end of

speech.

How do get accessibility-minded

measurements? Take a user study comparing

participants who have decreased motor function

in terms of our objectives: mass finish time and

error rate, as well as what they feel is their

workload (perceived) or level of satisfaction.

Qualitative feedback will help designers

remerge the project and in preparing learning

materials. To ensure proper testing of this

system, you must prepare the appropriate

environment for it to be executed, for example,

by adding the apache-ant-1.8.0RC1-bin and

sphinx-4-src open source software to the local

drive (C:).

The prototype followed the set

grammatical rules 94.6% of the time. The

average time to complete each step was

approximately 1.8 seconds. The error rate was

5.4%, and the system’s accuracy rate was

93.8%. When there was background noise, the

system continued to operate; accuracy was

about 90% in quiet conditions and around 82%

in noisy conditions.

The ant application must prepare the

Dos environment to execute the Java program.

Prior to building Sphinx-4, the environment

should set up in order to comfortable with the

Java Speech API (JSAPI) as many tests and

demonstrations depend on the presence of

JSAPI within the sphinx4 library. Finally, the

application must execute the following

command in Dos to verify the Ant application

C:\>ant, noting Figures 7,8.

FIGURE 7 : Windows XP and Windows 7 FIGURE 8: Windows 10

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

109

The error message of the Microsoft Dos

regarding to the ant command does not appear,

so the application implemented on the right

side. Instead, it simply informs you that the

build.xml file does not exist because it is

located inside your project folder rather than in

this path. The ant has already started compiling

all system components through referencing the

configuration “bulid.xml” file. The ant

command will run a compiler, and convert all

Java classes to jar files, then store those files in

the bin folder, and notify the system by the

name of the most crucial class that has the

main() function (see Figures 9 and 10).

FIGURE 9 : Windows XP and Windows 7 FIGURE 10: Windows 10

To activate the system, press \\enter>>; take note of Figures 11, 12 :

FIGURE 11 : Windows XP and Windows 7 FIGURE 12 : Windows 10

 Saying: -> Control panel, observe Figures 13, 14.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

110

FIGURE 13 : WindowsXP and Windows 7 FIGURE 14 : Windows 10

 Saying this: open C, observe Figures 15, 16.

 FIGURE 15 : Windows XP and Windows 7 FIGURE 16: Windows 10

 Saying -> Note pad, Figures 17, 18.

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

111

 FIGURE 17 : Windows XP and Windows 7 FIGURE 18: Windows 10

8. Discussion and Limitations
Restricted grammars favor precision over recall

(i.e., the more limited they are, the fewer

instances of unknown phrases they allow).

Recognition results are affected by factors such

as background noise and microphone quality,

and apply noise suppression and push-to-talk

functions for preventing erroneous triggers.

Regional accents and code-switching require

pronunciation variants or grammars designed

for individual languages. Furthermore, security

is an important concern as the executor needs to

restrict what actions are allowed to be

performed into a white list, remaining free from

arbitrary shell execution. In addition to noise,

language constraints, and system security,

future assessment should include explicit

accessible measures like user happiness, job

completion time, and perceived effort to further

assess usability. Comparing the grammar-based

prototype against existing voice recognition

methods would help contextualize its accuracy,

speed, and accessibility. Real-world usability

testing with motor-impaired people and

multilingual grammar settings to improve

inclusiveness and user adaptation might

improve the system in the long run.

9. Conclusion and Future Work
This study developed a modular prototype

application utilizing Sphinx-4 and JSGF to

execute Windows functions via voice

commands. It works and sets the stage for using

a desktop computer without hands. This tool

can make computers easier for people with

motor impairments to use by adding features

and doing user-based reliability and validation

checks. His research yielded a modular speech-

driven prototype software that utilizes Sphinx-4

and JSGF to execute Windows commands. It

works and sets the stage for using a desktop

computer without hands. This program might

help people with motor disabilities accept

inclusive computing by bringing together

Journal of Kerbala University, Vol. 22, Issue 4, December , 2025

112

features and testing their reliability with users.

Our future work will be to support all Microsoft

Windows commands and address the errors

generated by background noises and the speech

recognition for the mispronunciation of

commands. As future work, we should further

develop a reliable front-end noise suppression

system and an acoustic model in danger-free

environments, with controlled user studies to

evaluate the accessibility impact for users with

disabilities.

The technology will be improved so that it can

understand speech in different sound situations

and adapt to different ways of giving

commands. Volunteers with motor impairments

will help test the service in the real world to see

how easy it is to use and how much people

enjoy it. The proposed framework will also let a

wider range of languages and dialects serve a

bigger and more diverse population of clients

who speak different languages.

 References

[1] A. Vinciarelli et al., “Open challenges in

modelling, analysis and synthesis of human

behaviour in human–human and human–

machine interactions,” Cognitive Computation,

vol. 7, pp. 397–413, 2015, doi: 10.1007/s12559-

015-9310-8.

[2] J. Li et al., Robust Automatic Speech

Recognition: A Bridge to Practical

Applications. Academic Press, 2015, doi:

10.1016/C2013-0-19163-7.

[3] J. Vajpai and A. Bora, “Industrial applications of

automatic speech recognition systems,”

International Journal of Engineering Research

and Applications, vol. 6, no. 3, pp. 88–95, 2016.

[4] L. Clark et al., “The state of speech in HCI:

Trends, themes and challenges,” Interacting

with Computers, vol. 31, no. 4, pp. 349–371,

2019, doi: 10.1093/iwc/iwz016.

[5] A. Baevski, Y. Zhou, A. Mohamed, and M.

Auli, “wav2vec 2.0: A framework for self-

supervised learning of speech representations,”

in Advances in Neural Information Processing

Systems (NeurIPS), vol. 33, pp. 12449–12460,

2020.

[6] A. Radford et al., “Robust speech recognition

via large-scale weak supervision,” arXiv

preprint arXiv:2212.04356, 2022.

[7] M. Jefferson, “Usability of automatic speech

recognition systems for individuals with speech

disorders: Past, present, future, and a proposed

model,” 2019.

[8] D. Huggins-Daines, M. Kumar, A. Chan, A.

Black, M. Ravishankar, and A. Rudnicky,

“Pocketsphinx: A free, real-time continuous

speech recognition system for hand-held

devices,” in Proceedings of the IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2006, pp.

185–188.

[9] G. E. Lancioni, M. O’Reilly, N. Singh, J. C.

Lang, and F. Alfano, “Low-Cost Technology-

Aided Programs for Supporting People with

Motor or Visual-Motor and Intellectual

Disabilities,” JMIR Rehabilitation and

Assistive Technologies, vol. 10, no. 1, 2023.

[Online]. Available:

https://rehab.jmir.org/2023/1/e44239

[10] H. E. Semary, “Using Voice Technologies to

Support Disabled People,” Journal of

Disability Research, 2024. [Online]. Available:

https://www.researchgate.net/publication/37736004

8_Using_Voice_Technologies_to_Support_Di

sabled_People

[11] F. Karimli, “Enhancing Text Entry for Users

with Motor Impairments,” Proceedings of the

ACM Conference on Computer & Human

Interaction, pp. 1-11, 2025. ACM Digital

Library

[12] P. Lamere et al., “The CMU Sphinx-4 speech

recognition system,” 2004. [Online]. Available:

http://cmusphinx.sourceforge.net/sphinx4/
 [13] S. K. Kimutai, “Isolated word recognizer for

the Swahili dialect using Sphinx-4–Neural

Network Hybrid,” M.S. thesis, Moi University,

Kenya, 2020.

[14] Carnegie Mellon University, “Sphinx-4,” 2004.

[Online]. Available:

http://cmusphinx.sourceforge.net/sphinx4/
[15] F. Soares, J. Araújo, and F. Wanderley,

“VoiceToModel: An approach to generate

requirements models from speech recognition

mechanisms,” in Proceedings of the 30th ACM

Symposium on Applied Computing (SAC), 2015,

pp. 1644–1649, doi: 10.1145/2695664.2699492.

https://rehab.jmir.org/2023/1/e44239?utm_source=chatgpt.com
https://www.researchgate.net/publication/377360048_Using_Voice_Technologies_to_Support_Disabled_People?utm_source=chatgpt.com
https://www.researchgate.net/publication/377360048_Using_Voice_Technologies_to_Support_Disabled_People?utm_source=chatgpt.com
https://www.researchgate.net/publication/377360048_Using_Voice_Technologies_to_Support_Disabled_People?utm_source=chatgpt.com
https://dl.acm.org/doi/full/10.1145/3733155.3733218?utm_source=chatgpt.com
https://dl.acm.org/doi/full/10.1145/3733155.3733218?utm_source=chatgpt.com
http://cmusphinx.sourceforge.net/sphinx4/
http://cmusphinx.sourceforge.net/sphinx4/

