Abstract
Attention deficit hyperactivity disorder (ADHD) is a behavioral problem that can last into adulthood
and affect children. Because it can show complicated brain activity, electroencephalography (EEG) plays
a key role in determining the neurophysiology of ADHD. several statistical features are extracted from
five frequency bands by using a discrete wavelet transform. The proposed system is evaluated by using
K-means-based feature selection and 5 machine learning methods (Least-square support vector machine,
k-nearest neighbor, Decision tree, and naive-Bayes classifier, support vector machine), so this system
developed using a ten-fold cross-validation strategy and showed the testing accuracy for each classifier as
( 96.49%, 92.66%, 88.08%, 68.39%,53.71% ), respectively
and affect children. Because it can show complicated brain activity, electroencephalography (EEG) plays
a key role in determining the neurophysiology of ADHD. several statistical features are extracted from
five frequency bands by using a discrete wavelet transform. The proposed system is evaluated by using
K-means-based feature selection and 5 machine learning methods (Least-square support vector machine,
k-nearest neighbor, Decision tree, and naive-Bayes classifier, support vector machine), so this system
developed using a ten-fold cross-validation strategy and showed the testing accuracy for each classifier as
( 96.49%, 92.66%, 88.08%, 68.39%,53.71% ), respectively
Keywords
ADHD
EEG
K-means
machine learning