Abstract
RPHCL has a porous structure with a random distribution of distinct pore diameters.
In this work, the efficacy of agricultural waste was tested in removing Cibacron Blue 3G-A (CCB) colour from contaminated textile wastewater. In this study, Rhamnus pits (RP) were used as a readily accessible waste material as an adsorbent by carbonizing and impregnating it with a strong base (KOH) and a strong acid (HCL), respectively. The method of impregnation was carried out systematically. The carbonization process involved inciting the RP pits at a temperature of 300 °C, followed by impregnating some of the sample with hydrochloric acid HCL (a strong acid) and some with sodium hydroxide KOH (a strong base), and finally inciting the sample at a temperature of 600 °C as part of the activation process. One kind of adsorbent was not treated with any kind of impregnation; another type was treated with a strong acid; and a third type was treated with a strong base. (CCB) dye used as adsorbed the adsorption capacity and maximum adsorption rate were determined after variables affecting the adsorption process were analyzed. Results showed that KOH- and HCL-impregnated samples removed 96.6% and 88.24% of the sample, respectively, more effectively than the untreated control sample, which removed just 62.42%. Adsorption was performed at 30 degrees Celsius (86 degrees Fahrenheit), 0.05 g/10 ml of dye solution, 60 minutes, and a concentration of 25 mg/l of dye solution. The equilibrium adsorption curves were calculated using two widely used adsorption isotherm models. For KOH-activated RP pits, the Langmuir isotherm model offered a good fit to the data. In this study, the comparison and contrast are according to the pseudo-second-order and pseudo-first-order kinetic models for adsorption. It has been shown that the adsorption rate rapidly rises initially but gradually reduces when equilibrium is reached. When applied to the data, the pseudo-second-order model demonstrated an excellent fit with a confidence level of 0.999.
In this work, the efficacy of agricultural waste was tested in removing Cibacron Blue 3G-A (CCB) colour from contaminated textile wastewater. In this study, Rhamnus pits (RP) were used as a readily accessible waste material as an adsorbent by carbonizing and impregnating it with a strong base (KOH) and a strong acid (HCL), respectively. The method of impregnation was carried out systematically. The carbonization process involved inciting the RP pits at a temperature of 300 °C, followed by impregnating some of the sample with hydrochloric acid HCL (a strong acid) and some with sodium hydroxide KOH (a strong base), and finally inciting the sample at a temperature of 600 °C as part of the activation process. One kind of adsorbent was not treated with any kind of impregnation; another type was treated with a strong acid; and a third type was treated with a strong base. (CCB) dye used as adsorbed the adsorption capacity and maximum adsorption rate were determined after variables affecting the adsorption process were analyzed. Results showed that KOH- and HCL-impregnated samples removed 96.6% and 88.24% of the sample, respectively, more effectively than the untreated control sample, which removed just 62.42%. Adsorption was performed at 30 degrees Celsius (86 degrees Fahrenheit), 0.05 g/10 ml of dye solution, 60 minutes, and a concentration of 25 mg/l of dye solution. The equilibrium adsorption curves were calculated using two widely used adsorption isotherm models. For KOH-activated RP pits, the Langmuir isotherm model offered a good fit to the data. In this study, the comparison and contrast are according to the pseudo-second-order and pseudo-first-order kinetic models for adsorption. It has been shown that the adsorption rate rapidly rises initially but gradually reduces when equilibrium is reached. When applied to the data, the pseudo-second-order model demonstrated an excellent fit with a confidence level of 0.999.
Keywords
Activated Carbon
Adsorption
CCB
kinetic
Rhamnus Pits
thermodynamic
Abstract
في هذا البحث، تم اختبار فاعلية المخلفات الزراعية في إزالة لون Cibacron Blue 3G-A (CCB) من مياه الصرف الصحي الملوثة لمياه النسيج. في هذه الدراسة ، تم استخدام) Rhamnus pits (RP)نوى النبق ( كمواد نفايات يسهل الوصول إليها كمواد مازة عن طريق الكربنة والتحفيز بقاعدة قوية (KOH) وحمض قوي (HCL) . تم تنفيذ طريقة التحفيز بشكل منهجي. تضمنت عملية الكربنة تحريض نوى النبق RP عند درجة حرارة 300 درجة مئوية ، يليها تشريب بعض العينة بحمض الهيدروكلوريك HCL (حمض قوي) وبعضها بهيدروكسيد الصوديوم KOH (قاعدة قوية) ، وأخيراً حرق العينة عند درجة حرارة 600 درجة مئوية كجزء من عملية التنشيط. نوع واحد من الممتزات لم تتم معالجته بأي نوع من المحفزات ؛ نوع آخر عولج بحمض قوي ؛ والنوع الثالث عولج بقاعدة قوية. تم استخدام صبغة (CCB) كمادة ممتزة ، حيث تم تحديد سعة الامتزاز والحد الأقصى لمعدل الامتزاز بعد تحليل المتغيرات التي تؤثر على عملية الامتزاز. أظهرت النتائج أن العينات المشبعة بـ KOH- و HCL أزالت 96.6٪ و 88.24٪ من العينة ، على التوالي ، بشكل أكثر فاعلية من عينة نوى النبق غير المعالجة ، والتي أزيلت 62.42٪ فقط. تم إجراء الامتزاز عند 30 درجة مئوية (86 درجة فهرنهايت) ، 0.05 جم / 10 مل من محلول الصبغة ، 60 دقيقة ، وتركيز 25 مجم / لتر من محلول الصبغة. تم حساب منحنيات امتصاص التوازن باستخدام نموذجين متساويين للامتصاص مستخدمين على نطاق واسع. بالنسبة لنوى النبق RP التي يتم تنشيطها بواسطة KOH ، قدم نموذج متساوي الحرارة Langmuir ملاءمة جيدة للبيانات. في هذه الدراسة ، تم المقارنة والتباين وفقًا للنماذج الحركية من الدرجة الثانية والنماذج الحركية من pesodo first order . لقد ثبت أن معدل الامتصاص يرتفع بسرعة في البداية ولكنه ينخفض تدريجياً عند الوصول إلى التوازن. عند تطبيقه على البيانات ، أظهر نموذج pesodo second order ملاءمة ممتازة بمستوى ثقة يبلغ 0.999.
Keywords
CCB : ،حفر رامنوس ، امتزاز ، كربون نشط ، حركي ، ديناميكي حراري.