Abstract
The use of machine learning algorithms in order to, not only, detect the adversarial intend behind side-channel attacks on cryptographic systems, but also to resist Differential Power Analysis (DPA) attacks. In particular, with the help of the DPA Challenge Dataset containing power traces of AES encryption operations, we propose a detailed step-by-step approach that includes data acquisition, preprocessing, feature extraction, and model assessment. The pre-processing includes noise reduction, normalization and segmental processing of the collected data for which basic statistical and frequency domain analysis can be used for extraction of relevant features. Support Vector Machines (SVMs) are then trained and tested in order to classify and in turn predict attack scenarios as per the subsequently derived features. As the outcome of the result pages show, the SVM model successfully classifies attack and non-attack traces at a rate of 88% on the validation set, which underlines the usage of machine learning to boost cryptographic security. Investigation of the feature relevance demonstrates that frequency-domain features, namely FFT coefficients are most impactful. The findings of this research prove that machine learning can be useful in preventing side-channel attacks apart from providing valuable information on enhancing the understanding of different defenses in cryptographic systems as well as future development of this domain.
Abstract
استخدام خوارزميات التعلم الآلي ليس فقط لاكتشاف نية الخصم وراء هجمات القنوات الجانبية على أنظمة التشفير، ولكن أيضًا لمقاومة هجمات تحليل الطاقة التفاضلية (DPA). على وجه الخصوص، بمساعدة مجموعة بيانات تحدي DPA التي تحتوي على آثار قوية لعمليات تشفير AES، نقترح نهجًا تفصيليًا خطوة بخطوة يتضمن الحصول على البيانات والمعالجة المسبقة واستخراج الميزات وتقييم النموذج. تتضمن المعالجة المسبقة تقليل الضوضاء والتطبيع والمعالجة القطاعية للبيانات المجمعة التي يمكن من خلالها استخدام التحليل الإحصائي الأساسي وتحليل مجال التردد لاستخراج الميزات ذات الصلة. يتم بعد ذلك تدريب واختبار أجهزة المتجهات الداعمة (SVMs) من أجل تصنيف سيناريوهات الهجوم وبالتالي التنبؤ بها وفقًا للميزات المشتقة لاحقًا. وكما تظهر نتائج صفحات النتائج، ينجح نموذج SVM في تصنيف آثار الهجوم وغير الهجوم بمعدل 88% في مجموعة التحقق من الصحة، مما يؤكد استخدام التعلم الآلي لتعزيز أمان التشفير. يوضح التحقيق في أهمية الميزة أن ميزات مجال التردد، أي معاملات التحويل السريع (FFT)، هي الأكثر تأثيرًا. تثبت نتائج هذا البحث أن التعلم الآلي يمكن أن يكون مفيدًا في منع هجمات القنوات الجانبية بصرف النظر عن توفير معلومات قيمة حول تعزيز فهم الدفاعات المختلفة في أنظمة التشفير بالإضافة إلى التطوير المستقبلي لهذا المجال.