Abstract
The monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non-destructive (Hardness on HAZ) tests to investigate the quality control on the weld specimens. The experimental results obtained are then processed through the ANN model to control the welding process and predict the level of quality for different welding conditions. It has been deduced that the welding conditions (current, voltage, and travel speed) have a dominant factors that affect the weld quality and strength. Also we found that for certain welding condition, there was an optimum weld travel speed to obtain an optimum weld quality. The system supports quality control procedures and welding productivity without doing more periodic destructive mechanical test to dozens of samples.
Keywords
Artificial Neural Network
fusion arc weld.
Monitoring
Abstract
إنّ مراقبة نوعيةَ وجودة اللحامِ مهمةُ جداً لأنها تزيد احتمالية الارباح الماليةَ وهذه تَحْدثُ خصوصاً في عمليات الأنتاج حيث ان اللحام المعيوبِ يذهب مع الخسائرِ في الإنتاجِ ويَستلزمُ معالجته خسارة في الوقتِ والكلفة.
هذا البحثِ يَتعاملُ مع مراقبة نوعية اللحام وقابليةِ التحكم في عمليةِ اللحام الأنصهاري بالقوسِ الكهربائي التي تَستعملُ شبكة عصبيةَ إصطناعيةَ (ANN) كنموذج.
تأثير عناصر اللحامِ على نوعيةِ اللحامَ دُرِسَ بتَطبيق نَتائِجِ تجريبيةِ تم الحَصول عليها مِنْ لحام صفيحة الفولاذِ (1323 ASTM BN non-Galvanized) بسمك 6 مليمتر في ظروف اللحامِ المختلفةِ (تيار لحامِ، فولتية لحامِ، سرعة اللحامِ) تمت المراقبة بالأنظمةِ الإلكترونيةِ، ثم تُبعت بأختبارات فحص أتلافية لعينات (أختبار الشدّ والإنحْناء) وغيرأتلافية لعينات أخرى (أختبار الصلادة) لتَحرّي مراقبة الجودة على نماذجِ اللحام.
إنّ النَتائِجَ التجريبيةَ المكتسبةَ تمّ معالجتها بأدخالها لنموذجِ الشبكة العصبيةِ الإصطناعيِة للسَيْطَرَة على عمليةِ اللحام وتوقّعُ مستوى النوعيةِ لظروف اللحام المختلفةِ.
إستُنتِجَ بأنّ ظروف اللحام (الفولتية، التيار، سرعة اللحام) كَانَت العوامل المهيمنة التي أَثّرتْ على نوعيةِ وقوّةِ اللحامَ. أيضاً وَجدنَا انه عند تحديد ظروف اللحام، كانت هناك سرعةُ لحام قصويةِ للحُصُول على نوعيةَ لحامِ قصويةِ.
يَدْعمُ النظامُ إجراءاتَ مراقبة الجودةِ وانتاجية اللحام بدون عَمَل إختبار ميكانيكي تدميري الى أكثرِ من العشراتِ من العيناتِ.
هذا البحثِ يَتعاملُ مع مراقبة نوعية اللحام وقابليةِ التحكم في عمليةِ اللحام الأنصهاري بالقوسِ الكهربائي التي تَستعملُ شبكة عصبيةَ إصطناعيةَ (ANN) كنموذج.
تأثير عناصر اللحامِ على نوعيةِ اللحامَ دُرِسَ بتَطبيق نَتائِجِ تجريبيةِ تم الحَصول عليها مِنْ لحام صفيحة الفولاذِ (1323 ASTM BN non-Galvanized) بسمك 6 مليمتر في ظروف اللحامِ المختلفةِ (تيار لحامِ، فولتية لحامِ، سرعة اللحامِ) تمت المراقبة بالأنظمةِ الإلكترونيةِ، ثم تُبعت بأختبارات فحص أتلافية لعينات (أختبار الشدّ والإنحْناء) وغيرأتلافية لعينات أخرى (أختبار الصلادة) لتَحرّي مراقبة الجودة على نماذجِ اللحام.
إنّ النَتائِجَ التجريبيةَ المكتسبةَ تمّ معالجتها بأدخالها لنموذجِ الشبكة العصبيةِ الإصطناعيِة للسَيْطَرَة على عمليةِ اللحام وتوقّعُ مستوى النوعيةِ لظروف اللحام المختلفةِ.
إستُنتِجَ بأنّ ظروف اللحام (الفولتية، التيار، سرعة اللحام) كَانَت العوامل المهيمنة التي أَثّرتْ على نوعيةِ وقوّةِ اللحامَ. أيضاً وَجدنَا انه عند تحديد ظروف اللحام، كانت هناك سرعةُ لحام قصويةِ للحُصُول على نوعيةَ لحامِ قصويةِ.
يَدْعمُ النظامُ إجراءاتَ مراقبة الجودةِ وانتاجية اللحام بدون عَمَل إختبار ميكانيكي تدميري الى أكثرِ من العشراتِ من العيناتِ.